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Summary

The: feasibility of using 'a laser—based system for beam diagnostics
in the Alternating Gradient.Synchrotron (AGS) has.been studied from
first principles. - The collision cross—-section for-a photon-proton
collision-can-be found:using the Klein-Nishina formula., The details of -
thisi.solution.are given in ‘Appendix I. After performing the.appropri-
ate Lorentz transformations. to account for.the relativistic speed ‘of
the'proton, we find-that ‘the largest cross—section is obtained if the-
photon- approaches. anti-parallel (or parallel) to the proton's path.
In:this case, thescross—section per unit solid angle is

%% = 2.1 x 1072% cm?/proton.

The collision .cross—section is considered to be the effective
target area per proton.. At maximum- capacity there are 1.25 x 1012
protons:in an AGS bunch.in a volume.approximately 900 cm by 0.2 cm by.
0.3 cm.. The:-total effective target area for an anti-parallel approach:
is found to be.

(do

= ~16 2.
Eﬁ)TOT:— 4.3 x 10 cm”,

See Appendix I for. details.

*Summer student..



Due: to -the:relativistic speed:of-the protons, the incident:photons:
undergo - -a double Doppler-shift in:frequency.. Appendix II studies this.
aspect of the physics in detail. 1In :Appendix. III,:the .specifics of ‘a;.
few - of the:commercially available lasers.are studied. The number and .
the " frequency. of ‘the ‘scattered :photons.-for different scattering-angles
is .calculated for three-different:approaches: parallel, anti-parallel,.
and - perpendicular to the path of: the beam. (The parallel approach .is.
discarded 'as a possibility because the .photons are not scattered into:.
theivisiblé: range; a prerequisite for:imaging. The. perpendicular ap-.
proach-has a significantly smaller scattering cross—section.) .The -YAG
and .CO2 "lasers appear.most promising.- The YAG:scatters~5,800*photonsf
whiletthe CO2:scatters 11,500 per-solidiangle; The -timing of the vari-
ous-lasers with reference to the:time :sequence. of the AGS is also dis—
cussed.-

On looking.at the' commercially available low—intensity light .
imaging systems,.we have found:that :the:Hamamatsu. V20250 well isuits
this project.: Appendix IV gives. the specifications for this imaging
system. . Using -the. phosphorous screen-type output,  the device.is able:
to. image light:with an«intensity range from lOlmtovlosfphotonsxper~
seconduper‘mmg using micro-channel plates for intensifying extremely
weak images. The:spectral range of the-device is 280 to. 650 nanometers
with-a peak response at 420 nm or-7.14.x 1014 mHz. Another ‘possible-
imaging. system is.one implementing a charge-coupled:device. (CCD).pre-
ceded by several.micro-channel plates and-:a photo-cathode. This:set-up -
would ‘facilitate the electronic: storage:of the image in:a computer.
Information concerning the CCD's manufactured by Tektronix is :also
given -in: Appendix: IV.~

If the YAG:laser is used; .the detector can:be placed at any . scat-
tering angle between 97° -and . 118°, This:will allow for.the imaging -of
both high and-low:intensity proton:beams, 0.2 to 30 .GeV. If the.CO2 is
used, the angular range.for -30.'GeV. protons is 152° to:161°, If the
detector- is: positioned at a larger angle, a. larger energy range will be
accessible.. At a scattering angle:of 160°, the! C02 .will:allow for -
imaging of .protons.with'energies from 1.8 to:30:GeV., It .should:be
noted, -however, . that “the number. of scattered photons per solid angle is

inversely:.proportional to ‘Y2 where Y = 1/¥1 '~ v2/c?, If the.energy of
the :protons.is 30.:GeV, Y =-30. and:the number of:scattered photons .is in -
the thousands. If the energy is: 0.2 .GeV, Y = 1:;2 and.the .number-of :
photons is in thé.tens. The_.chosen detector -should have .a sufficiently
powerfulsimage'intensifyingggystemntov“see"‘thé‘lOW'energy proton -
beam.



The two-:graphs: following. this summary -show:the type of data that
can-be expected from the proposed-imaging system: In:the computer:
simulation,  the minisum number:of:photons was used (1140, corresponding
to-a YAG laser:and a detector with.a:20% quantum efficiency.) The
scattered ‘photons:are -assumed to ‘be normally distributed-in accordance:
witht'a Gaussian-distribution. The:standard: deviations are based on
experimental data from the current-monitoring-.system.. The schematic
diagram:following:the graphs . presents a possible physical arrangement
for the. apparatus :in the AGS.: A scattering angle of 0 =-110° is used,
corresponding to:a peak response:in the V2025U. The laser.used.is the
YAG, placed-far enough.away -from: the interaction point so. that: the
collision.is approximately. head-on.. The:only physical constraints
inherent. in this system are that :the laser béam must:approach .the pro-
ton beam.as close ‘to-héad-on as possible and . that a large converging -
lens: bé ! used near the interaction.point to maximize the .collection of
scattered photons.  Though the. ten-foot.i:straight section.shown in the
diagram :is. suitable, the'system could fit just as well elsewhere.

Considerable:additional. study:is still needed .since this sketch
does not:place the detector along.the beam line as:is assumed in.the
calculations; therefore, the: photons detected: here will'be far fewer -
than: shown:in Figures1l and:2.

An vin~depth ‘study of both:the:physics and engineering. aspects of a
laser~based system: for beam diagnostics in the AGS suggests that this
proposal is both.theoretically and practically well-founded.  Such a.
system: wouldallow for accurate; non-destructive beam imaging over the
full energy spectrum-.of ‘the- AGS."

I would:like- to: thank Dr..E,., Bleser for proposing this problem to
me:and: for supporting me- throughout.my research.
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AppendixiI: - The Collision Cross=Section:. .

The proposal- to implement..a laser—-based detection system-in'the.
AGS 'must: first be:studied in the simplified model of a one—on—-one-
photon-proton: collision.. The: Klein-Nishina Equation gives the dif-
ferential cross—section,.do,.for .the.collision:of “a photon of:incident.-
frequency,wvb?ﬂwithva-particleuatwrest,ausuallyﬁan.electron,nbutnin our -
case, a proton.. The equation-.is given.by Evans in The Atomic Nucleus, ..

page 680, as -

rg;" vf 2 vf?' vd ‘ 2 2 cm?
= —d|— | — — Cad -0 —a A
do z;d (v ) “(v + 3 | 2 -sin? cos” n)'[proton]o (1) .
o: : o fiu
where v =-e2/mrcg'inxCGS units, Vf.is the-frequency of:the scattered

radiatigﬁ;:dﬂ«isﬁfheasolidfangleﬁgiVenwby;sinue‘dend¢;-e’iS‘the scat— -
tering:angle and:n specifies the polarization of-the incident. photon.
Given:-the:.relation between theiincident . and.scattered frequencies, Eq..
1 can:be used to calculate the.probability:of:a specificicollision -
occurring between.a photon offfrequencygvo,and‘a proton:when the: photon ..
passes throughia-material=Whose~surfacendehsity,is,1 proton/cm?;f The .
collision .is such that .the: scattered: photon hasufrequencyvvfmand;is

scattered .through: an angle 6 within the:solid angle d®.'* A sum has ‘been - -

done over -all polarizations.of the scattered photon since the.:polariza—- -
tion of: the -scattered photon is: experimentally-unimportant.: do is-
called the collision cross—section. :

Using an: equation-derived from a study: of the Compton Effect, we -
find that:

E 1-
vdV 1+ a (1l =--cos 8)

(2).

where o =th6/m6c2_and;6'is again-.the.scattering angle; Eq. 1 'becomes

= 2. (= 1 .2 1
dﬁ’)z— 2'(l]+~a' (l;—:cosme'))f [l +a' (1:~ cos 6") *

[l:+ o' (1= cos:e‘)) - 2'sin2'6'“cos%'n']“ (3)



This :describes - the-collision between a -photon and a proton,. providing.-
that . the proton is :initially at rest. However, in the AGS,. the protons..
assume.:speeds: of “up .-to 0.99944c. Eq. 3.:is only correct in the rest
frame.of “the-proton.. This will’be the primed:reference frame, denoted
',  If the.incident photon has a frequency of-a (frequency will .often .
be represented by-theiunitless o =~hva/mbc%)”in“theilab frame, the
effect of thé proton's'motion:will cause a Doppler shift in the -
photon's frequency as seen by the. .proton.- The proton sees a. photon-
approaching with frequency

o' =:ay (1 - B.cos ¢) (4)

where Y RN (= 30 in . the AGS), B8 = v/c (= 0.99944 in the AGS) .

V1 - -v2/c?
and ¢ is-ithe angle between the.direction of motion of the proton and
the -photon measured -in the lab frame. For example, for a head-on
collision:-between" the proton and- the:photon, ¢ = 180°. Also, the.-
scattering angle 6 seen.in the: lab frame is not the 6' appearing in Eq.
3. They.are related by .

-
o =t [T ) )

The solid angle, df', must also.be transformed: to.the lab frame.
To :do this, we must'determine the relation between d22' and df2. The
solid angle is defined as

dA'

dQ' = S5 = gin 0' d6' ¢’
sz ”

where dA' = R'?"sin 6' d6' d¢, a surface element on-a sphere of radius
R'. For:our purposes.

dA'
R12

an' =

where dA'" is the.area of the detector ‘and R' is the.distance from the
point of ‘interaction to-the detector as measured by the proton.



If 'the detector is placed :along the line.of motion:of the proton:
(this will#turn.out to be-the position: of the most -experimental .
interest); .then the proton.sees thé.distance:to the:idetector con--
tracted: -

Rb
| R D
R". v (6)-

Where~R6‘is‘the»rest?lengthwfromutheicollisionﬁpqint»toxdetector,
measured in:the -lab frame. dA.= dA' because the.motion.of the proton:
is perpendicular-to the.area element., ' Therefore,

L . .
R12 g2
o
dar' '=-900 4%

This relation-holds’for -the special. cases:of backscattered radiation:

to-the motion: of .the proton (¢ = 0% or 180°).  The-calculation.isalso
correct: for ‘an approach:perpendicular to.the motion-of the:proton: (¢ =-
90°) if:the detector-is . located to:detect radiation scattered at 6 =:
90°. ‘

Using the: transformation of the:solid .angle and Eqs. 4 and.5 com- -
pletes .the transformation: of the Klein=Nishina Equation:to one:which is
applicable to:the situation. at “hand; a photon: striking a proton -moving
at relativistic speeds: :

Fba 900 — [ 1 ——7 ]2I .

l1‘+ ay (1L.- Blcos~¢)(ll-'cos~(tan"1"[ ]))
Y(cos 6 = B)

[l + oy:.(1 --B:cos.¢)(l_— cos(tan™! [Y (iing~—~8]))"+

1.

sin.0
Y (cos 0~ B)

1+ oy (1 - B.cos$)- (1 - cosn(tan™! |

2.sin? (tan™! [Y:(cizge-— B)J) cos® n.],w



Ii=-4 ..

The problem now:becomes. one of maximizing the.collision cross—
section. The factoraofirZ”bn'thevright—hand-side!ofaEq; 3 .is on the:
order of 10732, Inworderéthat the:collision:have some  reasonable .
liklihood of ‘occurring. .- the. .other terms on:the:right must-be maxi-
mized.:: Immediately, the polarizaton:of the:incident. photon should be ;.
set 'so that.n"' =:m/2,. To be.precise, - n' isrtheeangle*betweenntheuplaﬁe-
of ‘polarization -of the:incident photon :and. the-scattering plane-as
measured in: the proton's:rest frame. .

To: determine n in:+the. lab -frame,.we set up.our- axes: so that.the:
motion:of ‘the proton. frame is along:the z—axis-<of the lab's coordinate
system, For:our:convenience, let .:the’'origins of:the .coordinate-systems.:
be coincident. at-:the:instant. of ‘the: collision. . Afterwards, what-do
they. see?

If: the photon: was-incident along the z-axis, it was.also.incident..
along.the z'-axis. - After the:collision, the:photon.is:scattered by-
some -angle 0 in the:lab frame, measured.as 9' in the:proton frame.
Assume :that the polarization.of the: photon is.along the:-x—axis, then -it"
is also:along .the x'—axis because:.the relative motion:of the reference:

frames is in~the zz'—directiomn.::

Ifin'y=.7/2; then the photon. is scattered -in the y'z'-plane. The
diagrams below :illustrate.that..the motion of the: proton:frame -with .
respect. to-the.:lab frame:does,not result in raising.the:scattered

photon ‘from the yz-plane.. Therefore, if n' = ©/2; then'n also equals "
w2,
s ‘
-
s, )
[ . nn? 2
& L& o
A4
Vg

e



In the.case of:a photon. approaching perpendicular to :the motion. of.
the proton,.we set up .our axes in-a slightly différent manner.. Let the.
proton .frame-move along the:negative xx'~axes and let:thé“photon~apv-m4
proach. along:the y-axis. Because .of:the motion of the proton's refer-.
enceﬁfrﬁmehwith‘respect.tO“theflab-frame, the proton will see:a photon
approaching,. not+along:the. y'-axis, but - at some angle to-it' in the .
x'y'-plane.. We takeé!:the polarization-of the photon-to be:along ‘the:.

zz'-axes,. If'n' is to:be 7T/2, then we are looking at photons.scattered :

in:the:x'y'-plane. Because of- the: fortuitous .choice of axes, n willi.

also:be:equalto 7/2'if ‘we:look.for scattering in the xy-plane. There--
fore,.regardless of ‘the angle:of-incidence (¢.= 0°, 90° or 180d),.if n'
=m/2,-n =7/2,

Using -this value for n', the.last term in -Eq. .3 vanishes:and: we.

have:
do o 1 5 1
Eﬁ’?'900 *E.(1,+valﬁ(l’ cost'))?-[l'+'a':(l@—-cos:9f) +
14 a" (ljr~cos-9')]f; (7)

If we let § =1 + a'+(1 = cos.0"); Eq«-7 looks. like-

r
do e
" 900

rvlo [

Loy el
PR



In -order to maximize do/df,*V should: be minimized. In other words, let -
P.=-14 o'’ (1= cos 8') +-1,. This turns out .to be relatively easy.
Remember, o' ‘=:ay (L = B cos ¢), so we-simply let o + 0, As a > 0,:a'.
> 0‘and¥. > 1 for. all-.values of the+ scattering-angle and: along the axis
of ‘the .proton:beam do/dQ 900'r§,'which.is the maximum cross—section;
attainable for.this particular collision. This is a very-good approxi-
mation'since.a.is~very_tiny.ithe photon ‘energy is a few electron volts
whilethe.proton mass -is a billion electron volts. Thus, a is a few
parts in a billion.. We-:are working with the'protonranalogue of -
Thompson: scattering, which.in’the rest frame of the’ proton is es-
sentially-isotropic:in:the scattering. plane.. Therefore, the maximum-
crOSstection~for:a,photon—proton.collision-is'900"r§'é-2.l x 10729,
em?:” However, this was-calculated: for -a material with a proton surface
density’offl*proton/cmz; In the AGS, the proton surface density is
significantly higher.

At maximum-.capacity, the:AGS holds approximately 1.5 x 1013
protonswin>12“bunchesrof’1.25*x.10l2“protons/bunch.' For our: purposes,
we willirapproximate:a proton:pulse with-a cylinder of-rectangular
cross—section.. The length:of the:cylinder can be determined using. the
time -it. takes: the pulse to pass a detector, approximately 30 nano-
seconds, and.its speed, v = 0.99%44c.. The length, given by L =v x t,
is. approximately 900<‘cm. The:cross-sectional area is' about 0.06 cmz,
assuming theé bunch has a width of 0.3-cm and a height of 0.2 cm.
Therefore, the density of protons in a .pulse :is

o= 2,3.x 1010 protons/emd.

The proton surface density for -either a parallel or anti-parallel ap-

proach is

Ay = (900 cm).p = 2.1 x 1013 REotoms

cm?
If ‘the approach is perpendicular to-the proton beam, then:the surface

density is

=:(0.03 cm) p = 6.9'x 109;Pr0tons

A
+ cm?



These. calculations: are only. approximations. They.do not:take-into ..
accounti;the .irregular:shape:of the:pulse nor+the non-uniform density of ~
protons-in.the. pulse.- However, they should:suffice.for.our:purposes.

These.densities- represent-the-multiplicative increase.in the tarr:
getvsizevabove~the:1,proton/cm2‘f0r~which%the~previous cross—sectionsi
were calculated, Therefore, to:determine.the total:collision cross=—
sections: in+the AGS, the:previously determined cross—sections:should:be-
multiplied.by the:ivalue of the.surface density for-that:particular
collision.. If the .approach is 'parallel or.anti-parallel. to the:proton
béam, .

_Clg ; = il qA=16- 2.
(dQ)TOT," = >\" 900 .1’."0 = 4.3 x°10 cm- . .
If .the:incident- photon :approaches  perpendicular to the proton's path,

then.:..

do - - Y SN -19 .. 2 .
(G@-)ror,1 =21 900¥r2 = 1.4 = 10719 cn®,

These: numbérs :represent- rough ‘upper. limits on-the collision:cross—-
section:for photon—-proton collisions in the:AGS.



Appendix: II:. The Frequency Shift -

Another issue-of ‘experimental‘iimportance:.is the. frequency shift.of
the.scattered :radiation, Ideally, the backscattered-radiation (0 =:-
180°) would :suffer a large:frequency shift which .would make it experi-
mentally easier to differentiate between the incident and the.scattered .
radiation. Eq.:2.gives the relation:between:the. frequencies of 'the
incident rand.scattered :photons:in:the.rest frame of. the proton:

(2)..

: ]

" .yt :
Vg vo:[l + a' (I - cos:0")

£

We .can:transform Eq. 2 to the:lab-frame.using the .transformation equa~- -
tions:

v;r= vby‘(l - B cos:¢)-
a' = ay (1 -8B cos ¢) -
v% = vwa (1 - B cos ¢f) 

= tan=i sin 6
o' =tan”’ [Y~(cosa9 - B)]'

introducing themangle.¢f between: the.direction of motion of the scat-
tered photon and-the .proton. Remember that ¢ is the: angle between the..
incident-photon:and-the proton. Eq. .2 becomes

Ve Y (T - B'cos»¢f)w=avo-y (1L - B cos )

[ ) 1 : ] . (8).:;;
1 +axy (1~ Bcos ¢) (1'—~cos»(tan71?[ sin 9 ]))”

Y (cos 0= B)"

The-behavior -of ‘Eq. 8 is not+exactly intuitively obvious. If we..
let the:term-in brackets on the'right:be represented by ¥, Eq. 8 be-
comes

Ve (l;—-B'cos»¢f)”=.vd¥y (1 - B cos §HY. 9)



ir - 2.

Since:a.is .very, very small,:¥ > 1 and Eq. 9 becomes: .
2; _1-Bcos ¢
Vv — 1 ¢
o 1 B cos ¢f’
If ¢ ="0°, an approach:from behind,m¢f is® the. same angle-as 06, the
scattering.angle:(see Fig. 1 below). In this case,

[{,—j—)’ - 2.8 x 107

. = — OA—)
" 9=0° cosA¢fh‘9 > 180

be

o=
%AMWWP~J~9—-_-

Fig. 1+
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If. V were,  for:.example; 2.8 x 101% Hz (YAG. laser), then the -
frequency‘of the: back scattered.radiation would.be.7.8 x 1010 Hz. This .
correspondsito a frequency shift from the.infra-red: region of the. -
spectrum:to:the microwave. See :Graphil.

If. ¢ =-90°;. .

Ve | ¢, = 90%= 8 0 6 < 90°
G;£) _ =7 —'B'i;én¢ . where - T ‘ -

0 $=90° e g =8 = 90° 90°.< 6K 180°

See .Fig, 2a.and.2b, In-this case, the: largest frequency. shift is seen .-
for-a scattering angle of- '90°,

\) .
5 e 1800.
g
o
‘Jo A~y b 9 o
Fig. 2a.
%
“ o
X
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Ifmvoié;2.8'x,lOl”THz;:an?¢5.OIX 1017 Hz,. This represents:.a
shift.:from:the infrared region to -the-ultra-violet.. For this.:particu-:
lar:angle of .incidence, perpendicular to.the proton's motion; the:
frequency shift:ifor backscattered radiation-is negligible. As 0 =+
180°%, vf/vogj'l. See -Graph 2.

Lastly,. for -a head—on -collision, ¢ =:180°, ¢f,= 180%- - 0., See -
Fig: 3. below. Eq. 10 becomes- o

v

£y 3 148
. - — 8. CR—
Vo ¢=1g0°. L7 B cos (1807 = 9)
J
ok
b /4 »
Figvo'3.
As. 8.+ 180%
Vg
(=) s . 3600
Yo ¢=180° ° * 180%

For-voA? 2.8 x 10* Hz, Vf;='l;0'x.1018 Hz,.a shift from the
infrared to ‘the x-ray.- See.Graph 3.

Collectively, .the :graphs :illustrate.that-there are several experi-
mental.alternatives.which would result in-a large:frequency shift of
the: scattered radiation.




GRAPH 1

Q.

FHE

A L»sf.._xtsi!f..ti‘mms}(uizt..:iamwkl(.mw......mm.me.

F3

B

T 1 1 T "1 — T _
@ ow k@ W st M e

. . B e .

P T T - SRR~ SR ST ~ S o o o

" L

JANINSTNA LHIORHLANANGTN G381 I2IS

A2




GRAPH 2.

_..._ﬂr 4......,.‘ u\_mﬂm
: : o P -
PN S iiiifemsia.ilitt}irmm,l %ms

L v atenes 3 5 )amwsil;mT )mw«_wﬁm

Ay St Ty I N e A A A A My M Rt s S
S A R T B I N L B
PO O LU o o R S T v I v I w

. ﬁﬁ_cg 2.: _.
_Lzm:r_um»_ ._zum_ri,__.. »uzu:}m_m“_ Dummtdﬁm

‘-)_(, .
Us




GRAPH 3

Pt

FHI

B e T

ﬁ“w_cnn _a_.c._ L
._Jzu:cm.m»_ .:,_um_ _z_._c.uzu:.ﬁm_wz Dmmm t.ﬁum

Ve -

o




Appendix . III:.- Lasers-

Now that.we have calculated the-collision. cross-sections, we  can:
determine “how ‘many photons will actually reach a detector.. If:v0~is
the incident frequency of the laser.pulse and.E0 is the -energy per
pulse, then:

is the number. of incident photons per:pulse;- If S is the cross—
sectional:area. of ‘the proton beam . (assumed to be’ approximately 0:06  cm
for‘a;paralleluor_anti*parallEIHapproach'and=180‘cm2 for a perpendicu~—
lar approach,: see figure) and.if we:use.lenses to match the cross-=

section-of the-laser pulse with that. of the:proton:pulse, then ny,S is

¢

2 .

the.number of  incident :photons- per ;mzfin a pulse. Therefore,
QET;,EQ.QQE
a2 s . 4@’

is thetotal' number:of -photons:scattered through-the differential solid-
angle;. d2, from-a single laser pulse ~ proton pulse interaction,

q00<
130 emt

e &
.a/ '3CM S
w 0.0btm

The following page. gives some:of the relevant. information-for a.
few-of "the available:lasers, Thertime, t, displayed is’ the.length of
thé:pulses The*pgwer;uPo,'is;thelpower_perupulse;or Eg/ts The:last
two:columns give dN/dQ for parallel:or anti- parallel approaches (N/dQ-
I1):and for :a perpendicular approach (N/dQ-PER). In our calculationms,
we suse: the previously-determined values for-do/dfQ: -

%%g‘ = 4,3 x 10716cn2 |
tot,;11

do~ y

s =-1.4-x 107 %cm? "

“tot,l .
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The CO, laser. comes: out ahead:with:11,500 photons scattered per"
differential solid angles The:YAG!is the .runner—up with 5800:photons.
These numbers represent:the maximum.number of photons that:can:be ex- -
pected: to scatter through.the. differential scattering :angle df2.

In-deciding which-laser should ultimately be used for the project,
other technical details must--addressed.- To begin with, the laser pulse
should physically:match+the proton:pulse as closely as possible.. For-

instance, as mentioned- previously, lenses-should be used-to-converge or.

diverge the laser beam so that its :cross—section.is about..that of .the:
proton:pulse, Also, the lengthof:the.laser pulse should match the -
proton:pulse,; 30:- 60 'nanoseconds.. Both:the:CO, and-the YAG have- 50~
nanosecond. pulses which#fit nicely:in the ‘acceptable range.

Ideally, the time sequence of-the-laser would match that of:the.
AGS. Unfortunately,»this~is”impossib1e. The period of‘a pulse -in the"
AGS 1is 2.7 microseconds, much faster -than most lasers. This number .is
calculated- from the:circumference:of the:AGS (2 .* 7 ¢ 13,000 cm).and.
the.speed- of the:protons. (approximately c).. Q-switched lasers have-

frequencies in the. 0.1 - 300 Hz range,  a maximum:of -one: pulse every: 3.3

milliseconds. ..

Though. the: laser 'cannot. match the.period: of-'the proton pulse, it:
can be:.set to-match-a large integral-number: of proton.revolutions.. To
estimate  the minimum number -of ‘revolutions:a specific proton pulse must
make between  laser.pulses, we take:the.period of the laser pulse and-
divide it by the:.period. of .the . proton pulse. If the period of ‘the
laser-is 3.3 msec-and that of the proton pulse-is 2,7 microsec,- then-
the:laser pulse can be.made. to:collide with a specific proton . pulse.

every. 1222 revolutions. This' large number of revolutions may. pose some:

technological .difficulties, depending on.the stability of:the:proton .

beam. However, using a Q-=switched:laser, it is"theoretically possible:.

to-synchronize the:laser with- an.integral :number -of ‘proton revolutions,
which would: allow-for imaging of-a-specific proton pulse.

The next.consideration-is the frequency shift-suffered by the
laser;+ In-order-to image the beam,. the:frequency. of the:scattered
radiation.must fall in the:visible:range (3.9:- 7.7 x 101% Hz). This
requirement:is actually very exclusive,. as theé.data-on.the following .
pages. illustrates. ~'The:frequency. of the :scattered radiation:for-
several. different. lasers is displayed. Above each column. is-first:the-
incident: angle (ze = ¢ =-0°%, ni.=-¢ = 90°% w'=-¢ =.180°) followed by:a
slash and-then the scattering angle . (6 =-0°, 10%°; «eu, 180°).»%Asrcan§
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be seen, none- of -the:-lasers- are .scattered -into the visible region for:
an:approach :: from behind. (¢:=.ze =-0°), For ¢ =-90°, a perpendicular
approach,-several.possibilities:-exist., However, the scattering cross—
section-for. this:approach is significantly smaller than for a parallel”
or-anti-parallel:approach.

For-a head-on approach (O = 7 =.180°), the CO, laser scatters
light-into~the visible .range: at a.scattering .angle of 150°. TFor the
YAG;- the scattering angle must.be between 60:-and.- 100 degrees.. Which-
laser.is finally adopted for .the project depends a great-deal on the.
physical restrictions.-imposed by theiAGS. We:should: note' that both the
CO5:and ..the-:YAG have incident frequencies in-the infra-red. .Scattered -
radiation .in:the visible region-should:allow for relatively easy dif=.
ferentiationnbetween;stray*incident\photonswand'thesscattered-photonsi

Eleven .thousand five hundred 'scattered.photons.should like:a lot.:
of ‘light.. Unfortunately, most detection systems have.a quantum-effici--
ency. of:20%. . Immediately, 11,500 photons/d? becomes: 2300 photons. In
the:case: of the YAG laser, we:now have 1140 photons. So:few  photons.
williirequire a special .detection system.
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Appendix IV:- Photon-Counting Imagers

The following .pages- are.taken:from the:Hamamatsu 1986catalogue:
entitled Special Imaging Tubes. They describe two types of.photon..

counting imaging . systems manufactured by .Hamamatsu, the system with"
phosphorous screenoutput  and .the: system with a position=sensitive-
device (PSD) output. Both systems:use micro~channel plates for. image :
intensifying. The-phosphorous screen output is able to image light::
with a greater range-:of intensity.. It:works-in two modes: . analog-and
photon-counting. The:analdog-mode:allows for -imaging at. higher in-.

2 without saturating -

tensities, as'manyaaS%loquhotonsupermsecondaper_mm
the device, At:lower intensities, down:to: just tens of: photons,-the
device uses the:photon.counting mode to:produce images.. The PSD device -
is 'only suitable :for very low intensities. It:hasigreater intensifica--
tion capabilities, .up:to 109; implementing three.micro-channel. plates .
where -the:phosphorous screen outputionly.uses two.. Also; the PSD": :
allows: for:a- further multiplication:of ‘the initial signal by»a’factor&
of “one hundred.. However, if the device receives two signals-simultane-
ously, it rejects the 'data. For -this reason, the device using the:PSD
device is not: suited.for this.project.: .

To-electronically:store the image in a computer, the phosphorous-
screen can:be replaced.with a charge-coupled- device: (CCD). A CCD'is a
silicon based.array-which .allows for:two—dimensional electronic imag-
ing. - It is'made .up of ‘picture- eléments: (pixels) which collect elec-
trons.:and- an -output .register used.to read out-the:information. The
micro—channel: plates would:allow for:sufficient multiplication of the
signal so. that ithe CCDicould ”see. the:beam. The read—out.process.
preserves .the two-dimensional nature of. the.picture. Tektronix manu-
factures..CCD's . for:.scientific purposes. . Some excerpts £from their cata—
logue -follow.

BothTektronix. and.:Hamamatsu :are capable  of ‘designing a detection: .
system-to. suit the needs.of this.project using.a combination-of micro-
channel.'plate and - charge—coupled-device;technologies.



H

Producis

Tubes

o
(o) )
€
I I o
O) =
©
m s

(@)
——

£
© 2
nm m
D °

o
Q. 2
(7 I

1.

lated:

d Re

iers-ah

if

Intens

-Ray Image

X




DUCTION

——
m——

.‘hc:tocathodeu

A semi-transparent cathode which releases electrons
when struck by light.. Sensitivity to various wavelengths -
may; be achieved by selecting the material used for the
cathode surface and-window. -

Phetocathode Sensitivity -

Lumrinous: The photoelectric-current from the photoca-
thoc:e per the-incident light flux from a tungsten-lamp at .
2856 K. This is expressed in microamperes perlumen -
(pA/Im). This measure of sensitivity originally-referred to-.
ligh: sensors for the visible light region.

Radiant: The photoelectric current from the photocathode
per the power of the input monochromatic light.;This is
expressed in milliamperes per watt (mA/W)-at a wave--
length of interest.

Speciral Response

A pnotocathode’s sensitivity varies.depending upon the.-
wavelength of the incident light; the.spectral response is: -
the relationship of photocathode sensitivity to wavelength.

Phiasphor Screen - .

A screen made of a material which emits light when struck
.)y {-rays, ultraviolet radiation or electrons.:

Luminous Emittance

This is the measure.of the density of the luminous flux:.
emitting from a phosphor screen and is expressed.in ra- -
dolux (rlx) in the Sl system.or lumen/m?; in addition;-other. .
- units such as nits or foot Lambert (iL) are used, with .
coriversions being made at 1 rlx.= 0.318 nit or0.0202 {L...

fiiuminance:-

The density-of the luminous flux on a surface (Im/m2).. -
1im/m? equals.to.1 Ix or-0.0928 iC.

Photon

The photon is a quantized particle of light which has the-
prcperties of both.wave motion and particies simul-
taneously. Photons of a wavelength x» have an energy of: -
hera(h: Planck’s constant, ¢: speed.of.light). -

Photon Counting Nethod-

Th's is the method of counting individual photons..
When light strikes a photocathode,-photoelectrons are .
emitted. For high-intensity light, the photocurrent is large.. .
and can be measured as an analog quantity. However, for+.
ex:remely low-level-light, the interval between-emissions -
.of shotoelectrons becomes:large. Therefore,.ratherthan ..
measure the photoelectrons as a photocurrent; it is pos--
sit e to obtain.more accurate results by counting photons.

Ferminology Used in This Catalog

Pariicle. Counting -

Particie-counting refers to the detection and counting of
charged particles (electrons,:beta-rays, positrons, alpha
particles and related molecular ions) other than photons
(visible light, ultravioletto x-ray and- gamma-rays).:Al-

detection for other:particles, is possible using-an MCP.*

Picosecond:.

0.3 mm in a vacuum. At present; it is the limit.of man’s
current measurement and control capability. .

Fiber Optic Plate -

A plate consisting:of bundles of parallelfibers which.-
transmits light. .

Microchannel Plate (MCP). -
The MCP'is an electron multiplier consisting of many

form-of a thin plate.. Each channel has:a diameter-of 10
to 20pm and operates as an independent multiplier with ..
a.gain.of approximately 10*. Therefore, it can,perform...
electron multipfication while retaining two-dimensional -
information.

Schematic construction of MCP -

CHANNEL ‘WALL -
ELECTRON - :

= -OUT PUT
7 ELECTRONS ..

-1}
Yo
Operation of electron amplification

SiT-Camera-

A high sensitivity camera using & Silicon Intensifier Target
(SIT) tube. - o

ISIT .

Abbreviation for Intensifier Silicon. intensifier Target:

though a photocathode is required to detect photons, direct - .. :

1012 second. This:is the time required for light to travel ... -

bundled channels (micro glass capillaries) fused intothe -
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Magnification.

The image size produced on the phosphor screen divided

py that focused on ine photocathode. The average mag-
nification on the tube axis is usedto specify this parameter.

Thermionic Noise ..

This is the noise caused by thermionic emission.from the :
photocathode surface. |t can be-minimized-by-cooling the -

photocathode.

S/N-

This is the ratio.of signal to noise.

MTF (Modulation Transfer Function):

In. measuring:resolution, as-the stripe pattern density is
increased, a limit is reached below which the contrast of
the black-and-white stripe pattern having sinewave den--
sity variations cannot be lowered without making the ..
pattern indiscernible.

The relationship-between this contrast percentage and....

the number of line-pairs is referred to:as the:MTF. The =
MTF can be specified in percent at a particular.number.
of line-pairs. -

Limiiing Resolution:

The limiting resolution is a measure of the maximum ability:-
to delineate picture detalil. itis expressed as the maximum -

number of line-pairs per millimeter.(Ip/mm) that can be-
discerned when a black-and-white stripe pattern is fo-

cused on.the photocathode. In'this catalog, the value at .

MTF 5% is listed. -

Spatial Resolution-
Spatial resolution is defined as the minimum-distance

between two points or two lines on the spatial.coordinates -
(at the photocathode surface)that may be separated. It is .

expressed as the FWHM of the output when a light point
or line of infinitely small width is incident.on.the photo--
cathode surface. -

Dynamic Range

Dynamic range is the measure.of the maximum span..
between the measured maximum:and minimum signal-
levels-achievable under linear input-output character-
istics.

Radiznt Emittance Gain -

The ratio of the phosphor screen radiant emittance in watts-
per square meter (W/m?) to the:irradiance (W/m2).on the -
photocathode. In this catalog, values apply-for the input-

light of a wavelength at which the maximum photocathode -
sensitivity occurs and the.output light emitted by a P-20. -

phosphor screen (peak wavelength: 550nm). -

i

'
P

PSD (Position-Sensitive Detector)-

- The-PSD consists of a resistive layer uniformiy formed .
*on.the surface of a silicon photodiode and surrounded by
. - signal output electrodes. When.light or electrons strike this :

surface, an electric charge develops at the point of inci-
dence. The chargeis divided through the resistive layer.

and collected as a photocurrent by each electrode. Since .
7 the photocurrent is inversely proportional to the:.

electrodes’ distance from the point of incidence, the actual -
position can then be obtained by calculating.these output -

signals.
INCIDENT
OUTPUT LIGHT’” RESISTANT LAYER

) PHOTO~-

CURRENT
TTTTAITLTTTTR o ooy <— P-LAYER
<— |-LAYER ™
Z <— N-LAYER'

|

Electron Bombardment Efiect -

When electrons accelerated by an electric field bombard
a semiconductor of silicon or other materials; the kinetic

~ energy:of the electrons causes the ionization:of many at-
oms, resulting in-the generation:of free-electrons.-This is ..

_ called.the electron bombardment effect;,in the case of a...

© PSD, electrons accelerated by 3kV will achieve an electron -

multiplication ratio of 100 or greater. by this effect.: ..

Elecironic.Cocling Element

This element uses the Peltier effect which describes the .

absorption and generation-of heat when.a current flows -
through a junction.

Pulse Height Distribution

The electron-multiplication ratio-of an. MCP exhibits sta-.
tisticaf variations manifest as a characteristic pufse height... .

distribution. If a single-stage MCP.is used without satu-. .
rating the multiplication.mechanism, this distribution is .-
normally an-exponential function. -However; if a space

charge causes saturation-and this effect becomes domi-.

nant, the distribution will exhibit a peak. In-addition, for. .
2- and 3-stage MCPs, .this peak becomes pronounced and :.

is easily separated from:noise caused by dark current...

» -

Bark Count...

The.dark count is the number of bright spots at the phos--
phor:screen or:the number of PSDsignal pulses with zero .

incidentlight impinging on the photocathode under normal

‘ operating conditions: lt-is expressed-as the count per.

second per mm2 of photocathode area (cps/mm?). This -

canbe measured at either room temperature (25°C) or ..

with.refrigeration to —15°C."

1
I
I
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What is-a Photon:Counting Imager:

Photon counting.imagers are imaging tubes which use
photon-counting technology o-enable the measure of ul-- -
tra-low level light: The photon.counting:level.is of an in-.:
tensity of 1/100,000 or even:1/1,000,000 of what a human
would call “pitch black” (e.g. a night in the mountains with«
no moon):-While SIT cameras, image intensifiers and.si- ..
, milar devices are available'to measure low level light, i
O these devices are capable of obtaining images only in the .
above-mentioned “pitch blackness”. Below this light level,
further increases in the sensitivity of the.imaging device:-

do not result in images.-

Photon counting imagers have been developed for: ...
imaging-at such ultra-low:light levels. Two types of Ham- -
amatsu photon counting imagers are available; the -
phosphor screen output type and.the PSD output type, - ..
these.being selectable for individual application require- .-

menis.

Imaging at Ultra-Low Light Levels

Atultra-tow light levels of light intensity; it becomes difficult

to detect and measure the-light as an analog quantity.and -

the technique of detecting'light as particles (photons) is -

more effective. However, the signal resulting from indi---
‘ vidual photons is extremely weak and it is not possible to.:
obtain an image from the photon signal as is. At such ul-:«
tra-low light levels, a common technique is the photon.
counting method.using a photomultiplier tube. The light
may be treated as a series of separate particles and each -
signal pulse detected by the photomultiplier-tube repres- -

5y

ents each individualinput photon. By counting these - -
pulses, it is possibleito quantitatively measure the light. s
it should -be remembered, however, that the:photo-

_multiplier tube is a point sensor and does not detect spatial .
information (i.e:, from what part of the observed object light ' .

is emanating). The photon counting imager can be con-

~ sidered a two-dimensional photomultiplier tube capable

of photon counting.in two dimensions which provides
position information.on individual photons. -

Figure 1-1. Imaging-Devices for Various Ranges of inci- -

dent Light:Level
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The detection limit of'a photon counting;imageris one to -
several tens of photons per 1mm?; At-550 nm; this corre- ..

sponds to 107° t0.1078 lux and 10~ to 10~ ""W/mm? ra-.
diated energy—an extremely low level of light.
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CONSTRUCTION:
Figudre 1-2 shows the construction of the V2025-photon:-..

R e S T

counting imager. The V2025 consists of a photocathode, . .
an slectron lens, a two-stage MCP (microchannel plate):

anc a phosphor screen sealed in an evacuated. glass ..
envelope and potted with silicone rubber for protection.:
Its zonstruction-is similar to that of second-generation .
image-intensifiers. (with the exception of the,use of a -
twec-stage MCP) and, thus, may be termed an high sen--

siti vity image intensifier. A flat input window is used and ..+,

a fiber-optic plate may be used for the window as well.

Figure:1-2 Phosphor Screen Output Type Construction..

2-STAGE MCP
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Ficure -1-3 shows the operating principle of-a phosphor-
screen-output type photon counting imager. When an. -

imageis formed onto the photocathode by the iens, pho--
toelectrons are emitted; depending upon the intensity of - i
therlight. They are focused onto the-MCP. as.an electron -,
image by the electron lens. The MCP is a two-dimensional ...

electron multiplier at which one electron results in 102 to

10" secondary electrons. The multiplied electrons then ...

impinge upon the phosphor.screen.by -a high electric field
wt-ere they are converted:into a visible image..

The difference here with respect to a .normal image -
inlensifier-is the ability to select one of two.operating: .
methods. One; used at intensities as low as-1074 X, is
similar.to that of an image intensifier which provides-an
ottput image with continuous tone of light level. In.this
type of operation; the multiplication ratio of the MCP'is..
kept in the approximate range of 102 to-10* to prevent -
saturation. This type of operation.is called analog mode :
oferation.

The other mode of operation is used- at extremely low -
le'rel light of 10=5 Ix and below. In this region, the incident ..
lic ht becomes a series of discrete particles (photons).and . -
th 2 resulting generated photoelectrons are of a level such -

that one only may enter each channel.of the MCP.ltis .

imipossible to obtain a continuously toned-image. For this -

reason; the MCP multiplication ratio is set at:as high as
1C8 so that bright:spots representing individual photo-

elactrons are generated on the phosphor screen. Since -

tha MCP multiplication.is.saturated, these bright spots

he.ve uniform intensity.. Under these conditions, the gra- ..

deitions of the .output image intensity do not represent ...
iriage intensity but rather temporal and spatial density

5.

to store the-output image, enabling time storage of the: ... -
incident light and reconstruction of an-image. This:mode
of operation is called the photon counting mode.

Figure 1-3 Operating Principle of Phosphor -Screen
Output Type (V2025)-
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The ability to use the analog mode and the photon:-..
counting mode enables use over a very wide range of light -
intensities, spanning the ultra-low level region to the re-:-
gions generally encountered in TV cameras.  Switching:.....
between these modes is performed, as shown.in Figure .
1-5, when the photoelectron count:per.one.mm?/s is se-

-veral hundred. Also, when using a phosphor screen output -

type photon counting imager in the photon counting mode
as part of a system, the video signalis discriminated:into:..
two levels by digital processing.as shown in Figure.1-6...
The height (brightness) of the video signal of the single - .

-photon.spots has no significance. It is important for cre-...

ating.the image to detect-the position of bright spots.

" Therefore, the discriminator. level is set at'a point slightly -

above the video:signal dark level to code the video signal - .
into on and off (1 and 0) regions which is then transferred
to a video frame memory.

Figure 1-5 ' Resolution vs. Number of Photoelectrons
(Read out by -a Saticon): -
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Figure 1-6- :Photon Counting/Analog-Mode image Proc--
essing
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CONSTRUCTION
Figure 1-7 shows the construction of the N1831 PSD output

type device. The device is potted with silicone rubber for:- ..

protection and consists of a photocathode, electron lens

and MCP--essentiallythe same as for the V2025 phosphor: -

screen output type described above. However, a semi-.:

conductor-PSD (pcsition sensitive detector) that is incor-:

- porated-instead of the phosphor screen. Also, a .
three-stage MCP is used to achieve a highermuitiplication
ratio. In addition to the flat input window; a fiber optic plate
is also available.

Figure 1-7 PSD Qutput-Type Construction

3-STAGE MCP
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OPERATION -~

In contrast to the phosphor screen output type device; the .
PSD output type device can not be operated-in the analog -
mode, therefore, it can not be used in-an intensity region.

having a high number.of photons. However, it provides .

an image:of high resolution at extremely:low light levels: .

(refer to:Figure.1-10).

When-an image is formed onto the photocathode by a -

jens, photoelectrons are emitted from the surface, de-: .
pending on the intensity:of incident light.- The emitted -

photoelectrons are lead to the MCP. by the mesh electrode .

and the-electron lens, and are multiplied by about 107 at-

the. MCP. The multiplied electrons then bombard-the PSD-

where they are multiplied further by approximately 100"

and appear as an output current at the output-terminals.-

Figure.1-8. Operating Principle of PSD Output Type - .
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The operation of the PSD itselfis quite different from’
thatofthe phosphor screen: The PSDis a type of large-area

photodicde, and by connecting:a processing circuit to this-
device, it is possibleto obtain.output signals representing:.
the position of incidence of electrons or light on the surface :.

of the device. The accuracy of position measurement is*.:
in the order of £0.7% and the position resolutionis 0.05%,

both of these figures representing excellent performance::

Essentially;.each time a photoelectron is released from-

the photocathode, it is possible to obtainits accurate po-.-

sition signal from the PSD.: =
The position signals from:the PSD.output type device

are input-to:an image processing unit which stores them: ..

to reconstructthe image. When a broadened electron
group impinges upon-the PSD, a signal is output which
represents the center position of the group: While this -
eliminates the need to limit the incident electrons or light:
beam to a narrow spot, the simultaneous arrival of two-
or 'more such electron groups can result in an erroneous

output signal. When this occurs, the current flowing is two .-

times the .normal current, so that the problem may be

easily solved by eliminating output signals-over a given -

current:level. To achieve:this, two discrimination levels -

are used, as shown in Figure 1-8, to form a window which.-

enables only signals inside this range to be stored.:...

Figure .1-9 . Window Gate
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Chaiactensﬁcs of Photon Coummg Imagers
(F nosphor Screen Output Type)

] Spectrai Response ?ijhotocathode o Phosphor Screen ''''' 1 »Typispal»s’up ply Voltage -
: {7~ { ) maximum ratings.
Y SR EES AR - R N = ©]|. Photo---| Photo- v
vWavelength i . {Effective | Window | ,, | Effective |: Window:| cathode.to'{ cathode to | Meshto | -+
|.-of Peak: | -Material *| Diameter| Material | . |Diameter| Material |:Phosphor. | .- Mesh x| MCP-In-
: = Response s oM. L fThickness| . | M. |/Thickness| Voltage .| ' Voltage- | Voltage |- :
s i {nm)i] :__,(nm) ¢ {mm). | {(mm) | L {mm)o | {mm) . (kVde) i (kVde). {kvdc)
I e (i - oikati | : bopl 6~6.9 : 05 0.5
V025U Fo.r visible light; -|280~650 420 Bialkali. 1 18 B/1.5: |P-20| - 15 F/10.0. |- @) (0.75) (0.75) |-
" Near infrared extend- - . . . Aponlic1s . . 6~6.9 0.5 0.5 .
Vii025U-01 od version of V2025U 280. 850 -400 .. |[Multialkali-|. . 15 B/1.5 .| P-20 {5115 F/10.0: |- (@) ©75 .| (©75)-
, | Ultraviolet extended N , . : . - 6~6.9" 05" 0.5
Vii025U-02  version of V2025U 180~650 420 Bialkali |- 15 U/M.5 | P-207) 515 F/10.0 | - (8). . (©75) | (0.75).
, Ultraviolet-to-near infra- , " : e . g - . 6~6.9. 0.5 05 ..
Vi1025U-03 " red varsion of V035U 180~850 400 - [Multialkali s .. 15 U5 [P-20}:: 15 F/10.0 (8) ©758) | (0.75)
Fiber optic input : R ) . . 6~6.9" 0.5 . 0.5
o 07 ~ e . . -20 |+ .
Vil025U-07 type of V2025U 370~650 450. Bialkali 15 , F/10.0° | P-20 |-t 15 F/10.0 (8) (0.75) (0.75)
, Fiber optic input. |, I V e | oo | 15 | 6~69 05" 0.5
V:025U-08 type of V2025U-01 370~850|" 470" ... |Multialkali|- - 15 F/10.0 ‘P 20115 F/10.0 @) (0.75) (0.75)
3% Operating ambient temperature: —20 to +40°C; humidity; 40% or less . ’
@ 3: Borosilicate glass
J: UV glass
= Fiber optic-
® Analog mode for MCP gain of 10 or below, photon couting mode forMCP gain of 10° to 10°
® Analog/photon counting. mode -
[ va025U, -01, -02, -03 - - | [ v2025U-07, -08 |
75¢+0.3
75¢+0.3 2676
! 154MIN{PHOTOCATHODE) L (FHOL[ gcﬂﬁoos
i ’-—* I ‘i’- | L FIBER PLATE
} 250 - ! -
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(at 25°C)
Typical Supply Voltage - Maximum fnput | _ - g e . @ . 4 o
( ) maximum ratings. iiuminance ® - Photocathode Sensitivity {Lumi-| Limiting Mag-| . Radiant E‘mtttance
- nous | Resoju- " Dark | Distor- Gain ;;
Photocathode |- MCP-Out Luminous| -..: Radiant Emit-|. tion< [ | Count | tion (MCP.voltage: 1.9kV)| ' o
. . .. A 0T ! ..
to Foousing tyop | 10 Ianalog|- FMOWOR " <} (pA/m):| o (MAM) - tance| (Center) Tyo.| M| Max. | (at420nm)... | Type NO
electrode |, . phosphor {12 ‘Counting- - Max.| Typ. - . i
Voltage- Voltage ‘Voltage imode “mode” . - ’ .
° g 5 [Min.|Typ.| -Min. .| Typ.. . Min: |- Typ.
(kvde} . | {kVdc): | (kvdc) | {ix} - {Photonfemss | : {rix) {(ip/mm)]:  fepstmm?). (%) |
©0.1~0.2 -.11.0~1.9) 4. . G- ' ] 60-.1 70 ; . 7 5 | .
(0.5)° | (2.0). { (4.5) 10 10 30 | 60 (420nm)(420nm) 50| 18154 1 | 0277 5 |'5x107 | 1x10%| va2025u
01~02 [1.0~19} 4 5 0.3 2. ‘ 0.5 , , 8-
(0.5) ©0):| @5). 10 10 100 }'150 (800nm)|(800nm) 50 | 18/15f 1 (—15°C)| 5 5x 101 1x10 V2025U-01
0.1~0:2. [1.0~19} 4. 5 . 4 157 30 ) ' ) B 8|
(0.5) 2.0) | (4.5 10 10° 30 | 60 (254nm)|(254nm) 50 .18/15 1 0.2 5 5x10% 1 1x 10 V2025U-02
0.1~0.2 [1.0~19¢. 4 I ‘ 15° 30/ o 0.5 . . 7 8.
(0.5) (2.0 @5 | 10 10 100 ‘150 (254nm)|(254nm) ‘50 -18/15 1 (—15°C)|" 5 5x 10" 1 1x10 V2025U-03
0.1~0.2 |{1.0~18| 4 5 ‘ 30 40 , ; .
(0.5) (2.0) | (4.5) 10 10 25 | 45. (450nm)|(450nm) 50.1.18/15 1 0.2 5. 15x10 1x10 V2025U-07
0.1~C2 [1.0<19]| 4 s "von | 0.3 2.1 ; 05 | . 7. 6.
(0.5) 2.0y (45) 10 10 70 | 120 {800nm)|(800nm)|. 50 }.18/15 |, 1 (— 15°C) 5 5x 10 1x 10 V2025U-08
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Characieristics of Photon Counting Imagers (PSD Ouiput Type)

| Spectral Response™" . ' Photocathode . - Typ';cal.s'upp)y Voltage
: S { ): maximum ratings .-
' ’ . L ) _ Photo- Photocathode|
»}'YPG No.. _ Features ‘ 1 Wavelength{. _ - | Effective |Window . | cathode | :Photo- | Mesh to | to Focusing |.
o ’ e : ' | Range | of Peak..| “"Material:. |Diameter| Material | io PSD" | .cathode | MCP-In"| electrode::|
! Response{ . - - : Min. © {/Thickness| Voltage | to Mesh | Voltage' | Voltage = |’
| (nm)= | . (nm):. b (mm)s | (mm). | (kVde) | (kvdc): | (kvdc), {kvde) - |
. . . . . . 6.4 05 | 05 0.1~0.2 .
M1831U ) For visible light region - |280~650 420 - Bialkali 15 B/1.5 . (8.5) (0.75)" (0.75) (0.5)
Near.infrared extended: - ‘ - . . . . 6.4 . 05 | 05 | 01~02..
. H1831U-01 version.of N1831U _ 280~850 - .400 Multialkali 15 B/1.5 (8.5) 075 | (0.75) (05)"-
Ultraviolet extended version ) ) . S ’ ok 6.4 05 -1 05 0.1~02 |
H1831U-02 | of N1831U 180~650 420 - Bialkali: 15 u/t.5 (8.5) (0.75) (0.75) (0.5) =
) Ultraviolet-to-near infrared - ‘ ) . ) ) ; 6.4 05 .0 05 . | 01~02.
111831U-03 - “extended version of N1831U" 180~850 400- Multialkali .. 15 ; U/i.5 (8.5) 075 (0.75) 0.5
. , _ . . , R S 6.4 05:-| 05 0.1~0.2.
111831U-04 |:Ultraviolet version of N1831U [180~280{. 210 Cs-Te - ‘ 15 - UMb (8.5) - ©.75) | (0.75) (0.5).
; For far ultraviolet. Cs-l r I o o
1417:18-01 (sapphire window) 145~195 . 160 (MCP surface)|’ 18 S/0.5
ag e MgF2 window version-of . - - . Cs-l . o _ . _
1i1718-02 N1718-01. 115~195 140- (MCP surface) 18 , M/1.5 ‘ i

¥ Operating ambient temperature: —20%to"+40°C, humidity: 40% or less:
€)' B: Borosilicate glass
U: UV glass
S: Sapphire
M: MgFa -
@ ‘Maximum counting'rate, uniform over entire area with-incident light at uniform time intervals (apporox. 1/10 of these figures for random input)
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(at 25°C) i

Typical Sapply Voltage | s~ - |3 L e
-{ }: maximum ratings- Max.imum; ' ’,:_.,‘Ehotqcamode»Se ns}:?wlty- O Limiting-.. o
: i - i S T ~TRe tion |: . Gain - .
MCP-=- Counting ;" Luminous . Radiant > . Besqlution, Darkv . L .
¢ MCPw L] Outtor Rate.. | ' (gAdm)e | (mAMYL .. (Center) Count' .| Distortion .- Weight | :iType No.
- Voltagé:- ESD CTAL RPN L T SN 1A I T_ypi: -t Ma.x,.ﬂ.;, 1 Max. : S S
- Voltage - | R TR - RV S | ‘ . ‘
. SOrMin | Typ. o Mins Typ:. * Minaut Typ. | :
(vdo) |- (vde) |- teps) | P Y ymmy | epsmmdy |y T T ()
24 . 3 s 60| 70 . 7 g8 | ;
(3.0)° C@ 2x 10 30 . 60 (420nm) | (420nm) 18 0.6 3 10 10 500 | N1831U
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_® Resolution = the number of
- picture elements (pixels)
comprising the image. -
& Read-out noise — the signal

. measured at'the oulput in the

" absence of opticalinput: This. K
combined with quani.-m
efficiency. and charge transfer
efiiciency determine the
inherent device sensitivity. -
which is @ measure of the
minimal optical signal .
deteciable with the imager:

e Quantum efficiency —the
percentage of incoming.
incident light:quanta; or
photons, that generate - n
electrons that are collected ina -
CCD pixel. This specification-is. =
wavelength dependent: :

® Dark current —~the rate at which
charge generated.in the device”
itself is injected into the CCD
pixels in the absence of oplical .
input. This is a function of
temperature and processing -

* 1 K2Y PARAMETERS TO CONSIDER WHEN.COMPARING® =~ -
CCD/IMAGERS FOR: SCIENTIFIC APPLICATIONS® :

parameters. and ullimately-.
limits the sensitivity of the -
imager by limiting the -
integration iime (or exposure
time) o the device:

Dynamic range = the ratio of
peak signal carrying capacity of
the device (based on linearity
constraints) to & minimum
ouiput signal usually
established by the readout.

-noise capability of the device: |
For black and white imaging, -

this essentially specifies the
number of intensity levels that
can be resolved: :

Charge transfer efficiency (CTE)
—ameasure of completenessof. -
charge transfer. It specifies the.

percentage of charge that is -
transierred during a-clock -
transier cycle. This is usually a
function of signal level; and -

poor CTE can reduce dynamic* '

range {and sensitivity)

particularly at low signal levels. -

Typical Device Specifications.

Recommended Operating.

Conditions
R

Supply - Voltage Range :

(volts).
Voo. 20-30
Serial clocks 0-15
Paraltel clocks -. 0-15
Reset Drain 12-15
Reset Gate - 0-15
Input Dicde - 0-20
Sample Gate™- 0-15
Last Gate - 0-4 .
Summing Well 0-15
Vaa, 0-7
Transfer Gates 0-15
Source Supply: Vgs - =0 .-

Voliages are referenced to the backside contact. . .

TK512M:

TK2048M

Format

Process

Pixel Size -

imaging Area

Clocks -

Dark Current at 25°C .

Charge Transfer:
Eificiency (CTE).

Quantum Efficiency

Readout Noise -
T= ~90°C

Bandwidth-200xHz ..

(See figure 3)-

Full pixel signal—
# electrons .

‘ Output amplifier gain

(See figure 3)

Clock line capacitance

| 512x512 pixeis
Full Fréme - -

Three phase-
Three level poly

27pmx 27um -
13.8x13.8mmz.
0-15 Volis :

10nAlcmz?

.99899 -
50% at 700nm -

10e~ Amplifier A
20e~ Amplifier C*

700K

Amplifier A-.50V/ex
Amplitier C-2pVie ™

®5-2500 pF
@ or =200 PE: -

2048 x 2048 pixeis
Full Frame

Three phese -
Three level poly

27um» 27um-:
55.3x55.3mmse
0-15 Volts .

10nA/cm2

.989¢9
50% at 700nm

10e " Amplifier A
20e~ -Amplifier C- -

700K

Amplifier A-.5pvie” .
Ampldier C-2uVie™ -

®5-0.4yF

. Cr o C"BOO pF




Functional Description:

The Tektronix CCD's are three phase -
three ievel polysilicon gaie devices -
utiizing buried channz! 1echnology. -
Figures 1A and 1B.show a schematic -
outline of the TK512M and TK2048M
devices:

The device is structured in a serial-
parellel-serial (SPS) array and'is
intended for-use as a full frame imager.

imaging Area"

The imaging area consists of a square -

array.of 512 (or 2048).columns—each °
of which contains 512 (or 2048) CCD
picture elements (pixels). Each pixel is

27umx 27um square and the columns :

are isolated from each other. by 6um.
channel-stop regions. The device'is a

buried channel structure designed o+ -

take advantage of the low dark current:
and high CTE inherentwith this ..

orocess. Three levels of polysilicon are -

used io fabricate thethree gate
glectrodes which form-the basic CCD
cell. All of the pixels in 2 given row are -
defined by the same three gates:
Corresponding gates in each of the -
pixels in a column.are bussed in -
parallel at both edges of the chip. The -
signals used:to drive this.section are
brought.in from both edges of the -
array, thus speeding up the rate.at
which the columns can be clocked. - -

By maintaining one of the three -

glectrical phases-at.z positive bias.and -

the other two relatively low, potential

wells form.beneath the high.gates. [f an .

optical image is focused onto the array.

an electronic analog of the scene will :

be collecied in the potential wells.

The imaging section consists of 512 (or
2048) ¢, and ¢, gaies and 513 (or

2049) ¢, gates. (See Figures 2A-and - .-

2B). Consequently, during integration if

the ¢, gates are held high (i.e., charge

collecied beneath these gates) there
will be 513 (or 2048) lines of data: If
either.d, or ¢, or both are held high -
during the integration interval,:the

image will consist of 512 (or.2048) lines:.

Foliowing the integration interval the -
device may be read out'as a normal full
frame imager by transferring the -

collected charge one or more rows at a -

time into the serial (horizontal).shift:
register. and then shifting that charge to

the output.-The transter-gate allows line -+

summing-into the serial register.

The device 1s designed such that. -
imaging date can be bdwectionally «
read out; ihat is,.charge packets may.
be clocked-to.either end of the image
sensing.area and transierred 1o either
of the two output emplifiers, described.
below, located al opposite.ends of the-
array. The:CCD Timing Diagram (at
right) defines typical iming and control-
signals. and two sets of clock .
designations. Assignment of these .
signals to the appropriate pins:
essentially selects the desired {ransfer
direction. It should be noted however,:
that array data cannot be read-out

through both amplifiers simultaneously.-.-

Horizontal Registers-

There are two serial (horizontal) shift
registers on the chip; one at the top
and one at.the bottom of the imaging

area. The registers are identical except .
for the output-amplifiers as described in-

the next.section; The registers each
have 512 (or 2048) pixels plus 2 50
pixel exiension, Each-register is ..
provided-with.an input-diode and a
sampling gaie in.order-to elecirically
inject a charge into the device -
(oenerally used-only for testing-
purposes).

The output-of the senal register is.

terminated.in an output summing well, -

a DC biased gate (which serves io
decouple the senal clock pulses from
the output:node). and.the reset

transisior. The:well capecity of 2 pixelin..

the horizontal regisier:is twice ihat of a
parallel pixel.-

Figures-2A and 2B illustrate the -
detailed structure of the device. The. ..
figure shows how the:-gates in the
imaging and-horizontal registers are -
physically related. For-example. the -
charge collected in the imaging section
can.be transferred to & ¢, gate.”

through the transfer gate and then into..

a ¢y gate of the C horizontal regisier.

The summing. well is 2 separately
clocked gate which has the well -
capacity of two serial.pixels, Depending
upon the specific application, this gate
may be clocked with one of the normal:
serial clock phases or with its own .
pulse generator.. The function of the -
summing wellis 1o provide charge- -
summing of consecutive serial pixels,

on chip, without:adding any additional

noise to the process::

Using the summing.well it is possible 1o
collect and detect the charge in small
sub-arrays.of the imaging section. This
results in a loss of resolution, but is
useful where low contrast, low signal-to-
noise, diffuse scenes are being
imaged.

Output Amplifiers .

The imagers have two.different output
amplifiers. These are loceted at
opposite corners of the device at the
ends ol the exiended serial registers.- -

Figure 5 presents 2 schematic diagram -

oi the two amplifiers.- Both are ﬂoam-
diffusion amplifiers.

The amplifier at the end of the

A register is a simple, single stage .-
MOSFET. This ampli.ier will require an -
off-chip load and-is typically-used in the
source-follower mode.

In normal operation, a positive‘pulse is -

applied to the reset gaie. This sets the . -

potential-of the floating diffusion to the
potential.applied to the reset drain. The

reset gate voltage is then turned off and-
the output node (the floating diffusion): ...

is isolated from the rest of the circuit.
Charge from a serial pixelis then -
collecied on the output node by
seguencing the serial.clocks through
one cycle. The addiiion of charge on
the output node is then sensed as a:
change in the voltage on the gale of the

outpul MOSFET. This change in voltage - ,

is measured at V.

The emplifier at'the end of the

C regisier operates fundamentally in-
the same manner. The difference .
between.the two amplifiers is that the .
C amplifier:is a.dual-source follower : -
with on-chip sell biased loads. lis sense
transisior is a smaller device than the -
A amplifier, thus providing greater.
sensiivity (uVielectron). The output

transistor. of this amplifier is a very large.
device capable of driving a capacitively -
coupled 150 Q load.-The C amplifier-is -

designed for high speed operation and
has a design bandwidth:in excess of
10 MHz.

In addition to the reset fransistor, there .
arethree required connections fo the. .
C amplifier. These are Vpp. Vg and
Voe. - The Vgg connection allows -
flexibilityin.biasing the low rail of this:

amplifier at-some-optimal voltage above -

the chip substrate. Vo is the normal.
output and Vgpe 18 the drain supply.

TP Yy
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SXCELLENCE - PRICE LIST

CHARGE=COQUPLED DEVICE IMAGERS.

Tektronix: Inc-

‘Tekironix Industrial Park .

P.O.Box'500':

Beaverton. Oregon 87077 °

Phone: (503) 627-7111"
TWX:910-467-8708
Telex: 151754

TERTRONIX INTEGRATED :CIRCUITS-OPERATION "

Effective date:

18.July: 1985

\
\Device - TR51zM - TR512M TK2048M - TK2048M
Grade\- -x1 -X2 - -x1" -X2
\‘
I )
GR © [ - - $52,000.00 $103,500.00"
|
l
GR 1. | $3450.00 $8050.00 $46,000.00 $82,000.00"
|
[
GR 2. | 2875.00" 6900.00 35,100.00.. 78,200.00%
|
|
GR- 3 } 2588.00 " - 5750.00 28,750.00- 57,500.00
!
NOTES: . -
NOMENCLATURE: Devices are designated as TRabcM-xy:'with the

following code:

abc - model number designating: pixel ‘count

Xy - X is.grade (0,1,2,0r.3);
illuminated device,

back-illuminated;dev1cg.-

DISCOUNT' SCHEDULE: (TK512Mionly)

QUALITY

‘GRADES:

GR:

GR-.

GR"

GR’

LN+ o

QTY:
10 - —--24."
25 =
50 - 99"
100 -+

TKS512M -
(10',0) .
(20,1).
(40,3) -

Discount:

10%
15%
20%

y is.1 for front-
2 for thinned

call ICO Marketing

TR2048M

The following .grading system- applies to-imagers:.
(X,y) - % is:maximum-no.
y is maximum:no.

of point-defects .
of ‘column-defects

(100;2) + extra output-

(100,2)
(200,30) .
(400,;100) -

AN EQUAL OPPORTUNITY-EMPLOYER



