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Abstract

Two algorithms are presented for recovering
the longitudinal density distribution of
particles in a stationary bunch from the
experimentally obtained line density.

The algorithms can be used as alternatives
to the analytical theory.




1. INTRODUCTION

The knowledge of particles’ density distribution in longitudinal
phase space is important for the study of various instabilities, and
for computer simulations which always start from an assumed initial
distribution. This initial density profile should be as close to
exper;ment as possible.

In longitudinal phase space, any particle is characterized by 1its
energy, E, and phase angle, ¢, while the density distribution is saome
function p=p(E,@) which can also depend on time t.

i18E

Experimentally, we cannot directly observe

the phase density distribution. What we can E (¥)
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see (Fig.l), is the so—called 1line density A
or "mountain range”, which is an integral of v
phase density, p, over all particles with M
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Thus, the problem arises:

how to recover an unknown phase densgity
distribution, p(E.p). from a given Iline N

dengity A(ep) 7 T ° g

Generally speaking,this problem has ne unique
Fig.1. Line density

salution. However, there are practical cases
’ P ag a projection of a

where a unique solution, p, can be found. prhage density. When
- . Q+Ap
A review of some cases along with the A0 theﬁgifhi AP .
analytical theory is found in {1]. @@

In this report we deal with a stationary bunch whose local density,
py, can be reduced to the function of the Hamiltonian H (Fig.2):
p=p (E,p)=p (H) (2)

for which the line density is an even function:

Al—p)=A(p). (3)..




We will present algorithms, which can recover

a local density of type (2) from line density (1).
The latter can be represented either by an '

analytic function or just by a table.

In section 2 we recapitulate the dynamic theory
of the statiaonary bunch.

In section 3 we suggést the recovery algarithms.

Fig.2. stationary
bucket, bunch,
and Hamilitonian.

2. A STATIONARY BUNCH

In this section we review the basic equations and parameters of the
stationary bunch, which we will need later to find the recovery
algorithms. More detailed treatment can be found in Ref.2.

Synchrotron motion of non—interacting particles within a stationary

bunch below transition energy is governed by the equations:
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with the corresponding Hamiltonian
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The system (1)—(3) above is written in dimensionless form, where

dimensionless time 1 is measured in units of the synchrotron period To
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Subscripts r,st refer to the rest, synchronous and transition energy:

knot o refers to the bucket (with the exception of To,ﬁ%), sa, AEO i

bucket half-heightj; subscript b refers to the bunch; g is the particle
charge; V is the (total) peak voltage of the RF system, driven with
the frequency f which is synchronized with the particle’s revolution
frequency, w, by

hw = 2xf , (7)
where h is machine harmonic number (h=12 for the AGS).

The separatrix (bucket) equation SE=8E(¢) in phase space is just

= e
SE(o) + C052 - (8)
The bucket emittance is ©
e = 4‘£C05§d(p =g. (9)

The bucket half-height (dimensionless) is
SE =Cas0=1 (or 8E =AE /AE =1). (10)
o (=] (] <
The trajectory equation of a particle with the initial conditions

OE. ,p, and with the Hamiltonian

P.
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If (12) is the equation of the bunch Baundary, then the bunch
half-height is
LAY
8E,=Ym = Sinz , (13)
the bunch half-length is LW and the bunch emittance is
T
T‘
= = 4 ,’//S.i.nz—"b - Sin29 dop = BIE(m)—(1-m)K(m) (14)
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where K(m) and E(m) are complete elliptic integrals of the 1ist and 2nd

kind (see Appendix € in Ref. 2 for more details).

T
For a short bunch (Sins =5 ), a simplified formula is valid:
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The dimensional bunch half-height, half-length, and emittance are

AE, =AE BE_, ™., A=AE_s,, (16)

where AEO is a bucket half-height according to (5).

3. THE RECOVERY ALGORITHM

The recovery algorithm is a procedure in which a number of steps
are followed in a certain arder. Each step consists of several blocks,
and each block prescribes certain mathematical computations. Belaow,
we will describe each individual block and then the whole algorithm.
Actually we will suggest two algorithms——A and B. As A is a simple
modification of B, we will first describe B and later A.

We need a few notations from set theory: Pef means that element P
belongs to set £; @ means an empty set, £ # @ means that set £ is not
empty; and RMEz ? means that the intersection of the set R and set E

is not empty.
3.1 THE BLOCKS

Block 1. The grid.
In longitudinal phase space (9,3E), a étationary bunch, B, can be
inscribed into a rectangle, R, of size 2rbXZ6Eb, as shown in Fig.3.

If M,N are two arbitrary integers,

]
I=M'N and 8E
oE -L -4 8E, LZL
T r J———
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then introducing a grid @MN //’ \4
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E=h’f , Jee.stsz....22L (3) E; -
we will cover the bunch, B, by small
R R i - -2L
rectangles 05? with vertlces(qk,Eﬁ. VE

Fig.3.6ria G, superposed
onto the bunch [B.
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Block 2. The rings. Y
We now partition the bunch, B, into M elliptic-like rings, Ci,
bounded by two closed trajectories, GEk(m) and GEkﬁ(@), k=1,2,. . . M.
B . 2% . 29
8E, = Sin 5 — Sin 7 s -9, ¢ £, . (4)
Q=T *h 'k , k=0,4,. . . .M. (5)
M
B=7% 5? - (&)
k=1

Block 3. Fandom particle.

Within any rectangle, ﬁ%f we choose a random (particle) point
P =P($VE;) with coordinates

p,=p.+K* \RND(4), 8E =3E +h” .RND(J), (7)

where RND is a generator of random numbers homogeneously distributed

between O and 1:
O<RNDg1 . (B8)

Block 4. The ring cover.
For any ring 5; we can find all rectangles, ﬁaf intersecting

that ring. We denote thase rectangles with a bar:

R.Lj=7€tjn Sk z B . ()

Applying Block 3 to all such rectangles we'll find a set.ﬁi of random

particles P € § . Some of these particles 2 fo 2
e ——

L
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lie within the ring f&, and some of them

are outside aof the ring '(Fig.4).
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We check whether or not all the particles ':E:}E&'::{fz
P(p,E;) 1ie within a’ ring €, - \ LN [ AL
Those which do lie. in gk should satisfy ;\--p':¢h 21$B</
satisfy the inequality o — ;A#"

@ Fig.4. The rings and the
Gin2kt < 6E§ + 5in? ring (6;) cover (M=3,N=2).

2

P,
> s (10)

where P, determined by (3). .




Those particles which do not satisfy (10) should be discarded from
further treatment. As a result, the ring Ei will bhe fairly uniformly

filled by the set of the particles
P, ={75€6k}, (11)

whose density distribution is (approximately) constant,
We call this procedure ring cover, which leads to establishing a set
F; of uniformly distributed particles for the given ring é& .

An arbitrary ring,fk, is composed of small rectangles, F@r many of
which are cut by the ring boundaries. Such rectangles are truncated,
contrary to full rectangles which are not truncated.

The result of the ring covering procedure is that every full
rectangle contains exactly one particle, while some of the truncated
rectangles may have one particle or no particles at all due to
criteria (10).

Subject to the covering procedure we will denote a one~fold covered
ring with the notation Ei. Repeating this filling procedure to the
same ring g times we will get a g-fold covered ring, again having a
homogeneous particle distribution of g times higher density. The
homogeneity of the distribution is approximate due to the presence of
truncated rectangles lying along two borders of the ring. During
the g—-fold repetition each full rectangle will receive exactly g
particles, while each truncated rectangle ;ill receive an arbitrary
number of particles between 0 and g, depending how big is the cut part
of truncated rectangle. Thus, the smaller the size of ka the better
the approximation. If we can neglect the influence of all truncated
rectangles on the density distribution, then it is obvious that for a

g—-fold covered ring the local density is proportional to g :
pCED=a/4, , (12)
where the area of the full rectangle is
A =h" B’ (13)
and similarly for all the rings in the bunch.

It is abvious that the local densities, p, of two different rings

satisfy the inequality

p(é'i) < 9(8?), if p £ g . (14)



Block 5. The proJjection.

Along with the set of rings [E={€k}, determined by Block 2, we‘
need some construction connecting those rings with the 1line density
Alp). The latter is usually obtained experimentally as a table.

We will assume that we possess an interpolating algorithm able to
interpolate a value of A(p) for any ¢ within -r, $psT,, where r  is the

bunch half-length.

b

As we have seen, altogether we have ¥ rings covering the bunch.

Let us consider k consecutive rings (kR<M). Some of them are covered
by particles as was described in Block 4. So we have ring sequence
a a2, o
E s €75 <oas €7, (15)

where qi;O. Any ring, i{,has two closed boundary curves intersecting the

axis @ at two pairs of symmetric points.

3E

On the left—hand side of ¢=0 consider
two points with @=¢, and ¢=¢, which are
both taken from (3). Drawing through

those two points two vertical lines,

we will intersect the bunch as well as

the line density graph. Naw let’'s find

out how many particles 1lie between the

two verticals. These particles come from
all B rings (193). o
Suppose the total number of these

particles is Nk (Fig.5).

Vel N

If the density distribution which was

created within the bunch were exactly

the same distribution as that from which o L P
the experimental A(¢@) was taken, then we ko
would have Fig.5.From phase space
comes Nk, From 1line
L=N , (16) density comes L .
where
SE(p ) @, ?,
I I pte,8E)dedsE = [ A(p)dp = L. (17)
SE(p_. ) Pre-s Pro g




The algorithm in question is aimed at generating a particle
distribution which makes the integral in (17) as close to Nk as
possible:

Lk = Nk - (18)

The purpaose of Block 5 is to evaluate separately Lk and Nk for
subsequent comparison by another branch of the algorithm.
We will assume that along with the interpolating algaorithm for A we
have an integrating algorithm for computing any Lk from the given A.
Thus, all that is required of Block 3 is tao calculate a pair Lk, Nk
for any given ZR. We call this process a projection.

3.2 The algorithm B.

Stepl: Choose M,N.
Step2: Block 1. Define rectangles Rtj'
Step3: Block 2. Define M rings & (€, is the largest, €, 6 is the
smallest).
Step4: Put k=1.
Step5: Block 4. Cover Ek. Block 5. Get L ,N, .
Step6: If k=1 then put k=2, go ta Step5.
If 2 # 1 then go to Step7. o

L N
k k .
Step7: Check: C'P v £ , where 0.95 sCrs 1.1 is a corrector,

k-1 k-1

which is supposed to partially compensate for errors due to
truncated rectangles. The corrector is determined
experimentally after 2-3 runs of the algorithm.

Step8: If Step? is false, then go to StepS (add more particles

to k-th ring). If Step7 is true then go to Step9.

Step?: 1f k=M then go to Stepll, otherwise set k=k+7 and
go ta Step7.

StepiO: STOP:The job is done.




Figures 6a,b,c illustrate three cases for which algorithm B was

applied. The solid line on each figure represents a given line densit’
A=A(p) - After all the particles were deposited into the bunch (shown>
above the graph of A) according to algorithm B, we used the newly-—
created bunch to reconstruct the line density X=X(@), shown by the
dashed line. This gives us an indication as to the accuracy of the
algorithm. The local density, p, shown by the dotted 1line, was
computed by direct counting of the particles near the ¢-axis. For
stability studies, this p—-distribution heeds a smoothing treatment.

The main difference between these three cases is in the behavior of
the local density p. It is monotonic increasing from the left edge of
the bunch to its center in first case (a). For the second case (b), ¢
is a constant. In the third case (c), p 1is increasing and then Iis
falling. It is the latter (non-monoctonic) case which makes use of the
rings a necessity. For a pure monaotonic p the rings are not the best
tool because, the ring cover bears a significant relative error in its
"homogeneous" particle distribution unless the ring section number, N,
made is large. This can be done at the price of increasing (as Nz) of
the total number of particles. .
For the monotonic case, the full ellipse (not the ring) is a better

construction for generating a cover as, we will see in the next

section.

Fig.6. p is monotonic in case a, constant in b, non-monotonic in c.




3.3. The algorithm A.

When p is either constant or monotonically increasing, then to

recover ¢ from A the algorithm A which follows is more economical
accurate than B.

and
The latter can be easily converted to A by a simple

modification of three hlocks. In Block 1 we will put N=1 and in Block

4 we will use only the right side of the inequality:

®, P
-2 27 27k
3 in— < in — .
GEj + Sin 5 s Sin >
This means we have changed a definition in Block 2,

read now as follows:

which should be

Block 2. The disks.

Now we break bunch B into X ellipse~like disks [& bounded by

closed trajectories 6Ek(¢), k=1,2,. . . M.
y// . 2% . 2?

6Ek= * Sin E — Sin > s o ¢ S@k . (40)

¢k=—rb+hf.k . k=o0,,. .. M. (5R)

After these changes, algorithm B become a new algorithm, A, which

is simple, economic and accurate when it is applied to the case of a

monotonic p. Figures 7a,b,c repeat the examples from
However,

section 3.2.
this time the calculations performed using algorithm A.

- )

Nptel= 222 M=

Nptcl= 9949 M= 11
N= a -

.
¥ ]

C6.9radians @

s asasseasyss=cet R

-

Fig.7. The same as in Fig.6, but computed by algorithm A.



By comparing the results of algorithms A and B we conclude that
for a monotonic p algorithm A pravides better accuracy with a smaller.
number of particles. This 1s a significant advantage when the
recovered particle distribution will be used for further computer
simulations.

However, what we have from experiment is A , not p, and we usually
don’t know whether p is monotonic or not. For this reason, we need to
use both algorithms. Algorithm B should give us a hint as to the
behavior of p. If it is monotonic, we can repeat the calculation using
algorithm A, which provides better accuracy while using a smaller

number of particles.
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