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A b s t r a c t  

Two a1gorit:hms are presented for recovering 
the longitudinal density d ist r ibut ion of 
par t ic les  i n  a stationary bunch from the 
experimentally obtained l i n e  density. 
The algorithms can be used as al ternat ives 
t o  the analyt ica l  theory. 
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1. INTRODUCTION 

The knowledge of particles' density distribution in longitudinal 

phase space is important for the study of various instabilities, and 

for computer simulations which always start from an assumed initial 

distribution. This initial density profile should be as close to 

experiment as possible. 

In longitudinal phase space, any particle is characterized by its 

energy, E, and phase angle, cp ,  while the density distribution is s a m e  

function p=p(E,cp)  which can also depend on time t. 

Experimentally, we cannot directly observe 

the phase density distribution. What we can 

see (Fig-11, is the so-called ZCne densCtg, h 
or "mountain range", which is an integral o f  

phase density, p,  over all particles with 

the given phase angle (p : 

EmcL:'p' 

EmiAq' 

= ~(E,cp)dE . (1) 

Thus, the problem arises: 

how to recover an unknown phase d e n s d t g  

distributdon, p(E,cp), prom a gCven line 
densdtg ~ ( c p )  

Generally speaking,this problem has no unique 

solution. However, there are practical cases Fig.1. Line denst ty  
CLEP a projection of a 

where a unique solution, p ,  can be found. p b e -  d,eSZs c t y . m e n  
IT+ 4 

A p O  then-J'hdqwh( cp1 . CI review of some cases along with the 

analytical theory is found in Ci]. A(pcp 

In this report we deal with a stationary bunch whose local density, 
p, can be reduced to the function of  the Hamiltonian (Fig.2): 

for which the line density is an even function: 

A (-(p )=A ( c p  1 = 



- 3 -  

The l a t t e r  can be represented e i t h e r  by an 

ana ly t i c  funct ion o r  j u s t  by a table. 

I n  sect ion 2 we recapi tu la te the dynamic theory 

o f  the stat ionary bunch. 

I n  section 3 we suggest the recovery algorithms. 

I 

d 

W e  w i l l  present algorithms, which can recover 

a l oca l  density o f  type (2) from l i n e  density (1). 

Flg.2. S t a t C o w r y  
bucket , bunch, 

and HamCltonian. 

2. A STATIONARY BUNCH 

I n  t h i s  section we review the basic equations and parameters o f  the 

stat ionary bunch, which we w i l l  need l a t e r  t o  f i n d  the recovery 

algorithms. More deta i led treatment can be found i n  Ref.2. 

Synchrotron motion uf non-interacting pa r t i c l es  w i t h i n  a stat ionary 

bunch below t r a n s i t i o n  energy i s  governed by the equations: 

w i t h  the corresponding Hamiltonian 

(3) 
~ ( t ~ , c p )  = - BE=- Sin': . 

The system (11-43) above i s  wr i t ten  i n  dimensionless form, where 

dimensionless time 7; ir; measured i n  units o f  the synchrotron period To- 
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(I 

Subscripts r,s,t re fe r  t o  the rest ,  synchronous and t r a n s i t i o n  energy; 

knot o r e f e r s  to the bucket ( w i t h  the exception of To,bZ,), so, Eo 
bucket half-height; subscr ipt  b re fe rs  t o  the bunch; 4 i s  the p a r t i c l e  

charge; V i s  the ( t o t a l )  peak voltage o f  the RF system, dr iven w i t h  

the frequency f which i s  synchronized w i th  the p a r t i c l e ' s  revolut ion 

frequency , w, by 

i* 

ho = 2Kf , (7) 
where h i s  machine harmonic number (W12 f o r  the AGS) .  

The separatr ix (bucket) equation 8E=6E(cp) i n  phase space i s  just 

BE(?) = k Cos: . 

E*= 4 J C o s 3 c p  =8. ( $ 1  

( 8 )  

The bucket emittance is 
7c 

0 

The bucket half-height (dimensionless) i s  

6Eo=CosO=l (o r  6Eo=Eo/AEo=1) (10) 

The t ra jec to ry  equation o f  a p a r t i c l e  w i th  the i n i t i a l  condit ions 

6E,,yi and w i t h  the Hamiltonian 

can be wr i t t en  a5 

6E = -+ sin2- - sin22 2 
(121 . 

.. - 
If (121 is the equation o f  the bunch boundary, then 

ha1 f-height is; 
m 

the bunch hal f - length i s  rbY and the bunch emittance i s  

0 

where K(m) and E ( m j  are complete e l l i p t i c  i n teg ra l s  o f  the 

k ind ( s e e  Appendix C in R e f .  2 for m o r e  detuiLs) . 
7-b Tb 

2 -2 For a shor t  bunch (S in -  =- I ,  a s imp l i f i ed  formula i s  va l id :  

the bunch 

(14) 

1st and 2nd 

2 

nrb 
Eb=- 2 -  (151 e 
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The dimensional bunch half-height, half-length, and emittance are 

e AEb==AEo6Eb, rb, A=AEoab, (16) 

where AEo i s  a bucket half-height according t o  ( 5 ) .  

3. THE RECOVERY ALGORITHM 

The recovery algorikhm i s  a procedure i n  which a number o f  steps 

are followed i n  a cer ta in  order. Each step consists o f  several blocks,  

and each block prescribes , ce r ta in  mathematical computations. Below, 
we w i l l  describe each ind iv idua l  block and then the whole algorithm. 

Actual ly w e  w i l l  sugge!st two algorithms--& and B. A s  A i s  a simple 

modif icat ion o f  B, we w i l l  f i r s t  describe B and l a t e r  A. 

W e  need a few notat ions from se t  theory: P€& means tha t  element P 
belongs t o  se t  &; @ means an empty set, & # @ means t h a t  se t  & i s  no t  

empty; and xfl&# @ means tha t  the in tersect ion o f  the se t  R and se t  E 
i s  no t  empty. 

3.1 THE BLOCKS 

B l o c k  2. The F t d .  
.- 

I n  longi tud ina l  phase space ( cp ,6E) ,  a stat ionary bunch, B, can be 

inscr ibed i n t o  a rectangle, [R, o f  s ize  

I f  M , N  are two a r b i t r a r y  integers, 

> M  N and 

then introducing .a g r i d  GMN 

(2) 
X vi=” * C , C=~,+i.+z, .  - .+L , 

(3) 

we w i l l  cover the bunch, B, by small 

rectangles 12.. w i t h  vertices(cpi,Ej) . 

Y E.=h 1 3  , j=o,+1.+2,. . . .rzL 
J 

L J ’  

2rbx26Eb, as shown i n  Fig.3. 
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B l o c k  2. The rtngs. v 
W e  now p a r t i t i o n  t h e  bunch, [B, i n t o  M e l l i p t i c - l i k e  r i n g s ,  

bounded by t w o  c l o s e d  trajectories, 6Ek((p) and 6Ek-,( (p) , k=i.2,. . - .M. 

X 
(pk=-Fb+h * E 2  , 

M 
B = Z E , .  

k = i  

k=o, i , .  . ,M. 

Within  any r e c t a n g l e ,  Rij, w e  choose  a random ( p a r t i c l e )  p o i n t  

P =P(@. ,Ej 1 w i t h  c o o r d i n a t e s  

6Sj=BEj+hy RND ( 8)  , ( 7 )  
X - 

(pi=(pi+h *RND(i), 

where RND is a g e n e r a t o r  of random numbers homogeneously d i s t r i b u t e d  

between 0 and 1: 
O W D , < 1  .) 

0 
B l o c k  4. Il?ze rlng cover. 

For any r i n g  ck w e  can f i n d  a l l  r e c t a n g l e s ,  Rij9 i n t e r s e c t i n g  

t h a t  r i n g .  W e  d e n o t e  t h o s e  r e c t a n g l e s  w i t h  a bar :  
.._ 

Applying B l o c k  3 t o  a l l  s u c h  r e c t a n g l e s  w e ’ l l  f i n d  a se t .% o f  random 

p a r t i c l e s  P E Sk. S o m e  of t h e s e  p a r t i c l e s  - 
l ie w i t h i n  t h e  r i n g  ck, 
are o u t s i d e  o f  t h e  r i n g  (Fig.4). 
W e  check whe the r  o r  n o t  a l l  t h e  p a r t i c l e s  

P(Fi.gj] lie w i t h i n  a ’  r i n g  Ek.) 
Those which d o  l i e . i n  &k s h o u l d  s a t i s f y  

s a t i s f y  t h e  i n e q u a l i t y  

and s o m e  o f  them 

I .  

Ptg.4. The  rCng8 and the - 
2qk- i  -2 2 Ti 2 q k  rCng (&2) cover (M=3,N=2). 

S i n  - ,< BE.  + S i n  5 Q Slin - 2 J 2 ’  

0 where cpk de te rmined  by (5). 
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a 

Those p a r t i c l e s  which do no t  s a t i s f y  (10) should be discarded from 

uniformly fu r the r  treatment. 

f i l l e d  by the se t  o f  the pa r t i c l es  

A!I a resul t ,  the r i n g  Ek w i l l  be f a i r l y  e 

whose density d i s t r i b u t i o n  i s  (approximately) CC3llstaxIt .  

We c a l l  t h i s  procedure rtng cowef ,  which leads t o  establ ish ing a se t  

ffk o f  uniformly d i s t r i bu ted  pa r t i c l es  f o r  the given r i n g  Ek . 
An a rb i t ra ry  ring,& i s  composed o f  small rectangles, Rij, many o f  

which are cut  by the r i n g  boundaries. Such rectangles are truncated, 

contrary t o  ruZZ rectangles which are no t  truncated. 

The r e s u l t  o f  the r i n g  covering procedure i s  t h a t  every f u l l  

rectangle contains exactly one par t i c le ,  whi le some o f  the truncated 

rectangles may have om? p a r t i c l e  o r  720 p a r t i c l e s  a t  a l l  due t o  

c r i t e r i a  (10). 

Subject t o  the covering procedure we w i l l  denote a o m - f o l d  covered 

r i n g  w i t h  the notat ion <. Repeating th is  f i l l i n g  procedure t o  the 

same r i n g  q times we w i l l  get  a 4-fold covered r ing,  again having a 

homogeneous p a r t i c l e  d i s t r i b u t i o n  o f  4 times higher density. The 

homogeneity o f  the d is i t r ibut ion i s  approximate due t o  the presence o f  

truncated rectangles l y i n g  along two borders o f  the r ing.  During 

the q-fold repe t i t i on  each f u l l  rectangle w i l l  receive exactly 4 

par t i c les ,  while each truncated rectangle w i l l  receive an a rb i t ra ry  

number o f  p a r t i c l e s  between 0 and q ,  depending how b i g  is the cut  pa r t  

o f  truncated rectangle. Thus, the smaller the s ize  o f  Rij, the be t te r  

the approximation. If we can neglect the inf luence o f  a l l  truncated 

rectangles on the density d i s t r i bu t i on ,  then i t  i s  obvious t h a t  f o r  a 

q-fold covered r i n g  the l o c a l  density i s  proport ional t o  q : 

- -  

pCqI=q/A, , (12) 

where the area o f  t he  f u l l  rectangle i s  

AR=hx 4 hy (13) 

and s i m i l a r l y  f o r  a l l  Ithe r i ngs  i n  the bunch. 

I t is obvious t h a t  ithe l oca l  densit ies, p,  o f  two d i f f e r e n t  r ings  

s a t i s f y  the inequal i ty  

P C C I  d PCCI. i f p S 4 .  (14) 
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B l o c k  5. The ~ O ~ f 3 C t ~ O ? Z ,  
J 

Along w i t h  the s e t  o f  r ings  E= kk}, determined by Block 2, we 

need s o m e  construction connecting those r ings  w i t h  the l i n e  density 

A ( ? ) .  The l a t t e r  i s  usual ly obtained experimentally as a table. 

W e  w i l l  assume t h a t  w e  possess an in te rpo la t ing  algor i thm able to 

i n te rpo la te  a value o f  h(cp) f o r  any cp w i t h i n  -rb<cp<rb, where rb i s  the 

bunch ha 1 f- leng t h  . 
A s  we have seen, altogether we have M r ings  covering the bunch. 

Le t  us consider k consecutive r ings  (BQM). Some o f  them are covered 

by p a r t i c l e s  as was described i n  Block 4. So we have r i n g  sequence 

where q30. Any r ing,  C, has two closed boundary curves in te rsec t ing  

ax is  cp a t  two pa i r s  o f  symmetric points. 

O n  the left-hand s ide  o f  ’p=O consider 

the 

SSE 
two points  w i th  cp=cpk-iand which are 

both taken from (5). Drawing through 

those two points  two v e r t i c a l  l ines,  

we w i l l  i n te rsec t  the bunch as we l l  as 

the l i n e  density graph. Now l e t ’ s  f i n d  

out how many p a r t i c l e s  l i e  between the 

Ip 
I 

two v e r t i c a l s -  These p a r t i c l e s  come from 1 
- -  

a l l  k r i ngs  (15). 

Suppose the t o t a l  number of these 

p a r t i c l e s  i s  Nk (Fig.5). 

If the density d i s t r i b u t i o n  which was 

created w i t h i n  the bunch were exactly 

the same d i s t r i b u t i o n  as t h a t  from which 

the experimental h(cp) was taken, then we 

would have 
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The algori thm i n  question i s  aimed a t  generating a p a r t i c l e  

d i s t r i b u t i o n  which makes the i n teg ra l  i n  (17) as close t o  M, as 
possible : 

Lk r Nk . (18) 

0 

The purpose o f  Block 5 i s  t o  evaluate separately Lk and Mk f o r  

subsequent comparison by another branch o f  the algorithm. 

We w i l l  assume t h a t  along w i t h  the in te rpo la t ing  algor i thm f o r  h we 
have an in tegra t ing  algori thm f o r  computing any Lk from the given h. 

Thus, a l l  t h a t  is re?quired o f  Block 5 i s  t o  ca lcu late a p a i r  Lk,  Nk 
f o r  any given k. We c a l l  t h i s  process a projectCast. 

3.2 The algorithm B. 

Step*: Choose M,N. 

StepZ: B l o c k  1. Define rectangles R. . .  
Step3: B l o c k  2. Define M r i ngs  &k 

S t e p 4  P u t  k=l . 
Steps: B l o c k  4. Cover Ek. B l o c k  5. Get Lk,Nk. 

Stepb: I f  k=l then put k=2, go t o  Steps.  

LJ 

(Ei i s  the largest,  i s  

s m a l  l es t ) .  

--  I f  fi: # 1 then go t o  SteP7. 

the 

, where 0.95 <er< 1.1 i s  a corrector, "k Nk 
Step7: Check: cr < - 

k-i' k -i 

which is supposed t o  p a r t i a l l y  compensate f o r  e r ro rs  due t o  

truncated rectangles. The corrector i s  determined 

experimentally a f te r  2-3 runs o f  the algorithm. 

Step& If Step7 i s  false, then go t o  Steps (add more  pcrrtLcLea 

to k-th ring) . I f  Step7 i s  t rue  then go to SteP9. 

Step9: If k=N then go t o  StepiO, otherwise se t  k=k+7 and 

go t o  Stepl .  

Stepla. ST0P:The job  is done. 
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F i g u r e s  b a , b , c  i l l u s t r a t e  three cases f o r  which a l g o r i t h m  B w a s  

a p p l i e d .  The s o l i d  l i n e  on  e a c h  f i g u r e  r e p r e s e n t s  a g i v e n  l i n e  d e n s i t e  

X=h(cpl- A f t e r  a l l  t h e  p a r t i c l e s  w e r e  d e p o s i t e d  i n t o  t h e  bunch (shown 

above  t h e  g r a p h  of A) a c c o r d i n g  t o  a l g o r i t h m  B, w e  u s e d  t h e  newly- 

c r e a t e d  bunch t o  r e c o n s t r u c t  t h e  l i n e  d e n s i t y  +h(cp), shown by t h e  

dashed  l i n e .  T h i s  g i v e s  u s  a n  i n d i c a t i o n  as t o  t h e  a c c u r a c y  o f  t h e  

a l g o r i t h m .  The local d e n s i t y ,  p, shown by t h e  d o t t e d  l i n e ,  w a s  

computed by d i r e c t  c o u n t i n g  of t h e  p a r t i c l e s  n e a r  t h e  y - a x i s .  For 

- -  

s t a b i l i t y  s t u d i e s ,  t h i s  p - d i s t r i b u t i o n  n e e d s  a smoo th ing  t r e a t m e n t .  

The main d i f f e r e n c e  between t h e s e  t h r e e  cases is i n  t h e  b e h a v i o r  o f  

t h e  local d e n s i t y  p. I t  is nwnotonCc i n c r e a s i n g  f r o m  t h e  lef t  e d g e  o f  

t h e  bunch t o  its c e n t e r  i n  f i r s t  case (a). For t h e  s e c o n d  case ( b ) ,  p 

is a c o n s t a n t .  I n  t h e  t h i r d  case ( c ) ,  p is i n c r e a s i n g  and  t h e n  is 

f a l l i n g .  I t  is t h e  l a t te r  (non-moaotoa$c) case which m a k e s  u5e o f  t h e  

r i n g s  a n e c e s s i t y .  For a p u r e  monotonic  p t h e  r i n g s  are n o t  t h e  b e s t  

tool because ,  t h e  r i n g  cover b e a r s  a s i g n i f i c a n t  r e l a t i v e  error i n  i t 5  

"homogeneous" p a r t i c l e  d i s t r i b u t i o n  u n l e s s  t h e  r i n g  s e c t i o n  number, N ,  
2 

made is l a r g e .  T h i s  can b e  done  a t  t h e  p r i c e  o f  i n c r e a s i n g  (as N 1 o f  

t h e  t o t a l  number o f  p a r t i c l e s .  

For t h e  mono ton ic  case, t h e  f u l l  e l l i p s e  ( n o t  t h e  r i n g )  is a b e t t e r  

c o n s t r u c t i o n  f o r  g e n e r a t i n g  a cover as, w e  w i l l  5ee i n  t h e  n e x t  

s e c t i o n  - 

0 

-.- 

I N p t c k  8418 M= 6 - . . .. N= 2 

C@..gradi ans @ a. 9 

1, PZg.6. p 6s monotonic Zn cuse a, constant $41 b,.wn-monoton<c tq2. c. 
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When p is either constant or monotonically increasing, then to 

recover p from h the algorithm A which follows is more economical and 

accurate than B. The latter can be easily converted to A by a simple 

modification of three blocks- In B l o c k  1 we will put N=l and in B l o c k  

4 we will use only the right side of the inequality: 

--2 2% zvk 
BE;. + Sin - < Sin - 

J 2 2 -  

This means we have changed a definition in Block 2, which should be 

read now as follows: 

B l o c k  2. The disks. 

Now we break bunch /B into M ellipse-like disks Dk bounded by 
closed trajectories 6Ek( c p )  , k=%.z,. I . ,M. 

29 - Sin - / Z 9 k  
2 ’  Sin - 2 BE,= k 

V ~ = - T ~ +  h’ + .k , k=o,%,. - . Jf. ( S A )  

After these changes, algorithm B become a new algorithm, A, which 

is simple, economic andl accurate when it is applied to the case of a 

monotonic p. Figures 7’a,b,c repeat the examples from section 3.2. 

However, this time the calculations performed using algorithm A. 

-0.9radians 0 0.9 

Nptcl= 222 M= 6 

eo= .95 

I Nptcl= 9949 M= 11 

0.9radians 0 0.9 
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that. By c o m p a r i n g  the results o f  a l g o r i t h m s  A and B w e  conclude 

for a m o n o t o n i c  p a l g o r i t h m  A provides be t te r  accuracy w i t h  a s m a l l e r  

n u m b e r  o f  par t ic les.  Th is  i s  a s ign i f i can t  advantage w h e n  the 

recovered p a r t i c l e  d i s t r i b u t i o n  w i l l  be used f o r  further c o m p u t e r  

s i m u l a t i o n s .  

H o w e v e r ,  w h a t  w e  have f r o m  e x p e r i m e n t  i s  h , not p, and w e  usually 

don't k n o w  w h e t h e r  p i s  m o n o t o n i c  o r  not. For t h i s  reason, w e  need t o  

use both a l g o r i t h m s .  A l g o r i t h m  B should g ive us a h in t  as t o  the 

behavior of  p.  I f  it is m o n o t o n i c ,  w e  can repeat the ca lcu lat ion using 

a l g o r i t h m  A, w h i c h  provides be t te r  accuracy w h i l e  using a s m a l l e r  

n u m b e r  o f  par t i c les .  

I am g ra te fu l  t o  Leaf A h r e n s ,  M i c h a e l  Brennan, M i c h a e l  G o l d m a n ,  

M a r i o n  H e i m e r l e ,  Eugene Raka, Peter  Y a m i n  f o r  f ru i t fu l  discussions. 
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