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Abstract

A stationary bunch is the simplesit accelerator concept for testing
mathematical models of particle dynamics in longitudinal phase space.

There are two mathematical models For particle dynamics @
continuous and discrete. The continuous model is based on differsntial
equations and Hamiltonian formalism, while the discreite model is based
on difference equations and recurrence theorvy. Each of the models is
approximates and is juwdged by comparison with sxperiment. Boith models
advantages come from their analyitical and computational simplicity and
effectivensss. It is a combination of thess two models which makes
modeling successTul. For example, wse almost always use the Hamiltonian
from the continuous model to caiculatz the bunch shape  (boundary of
particles’ stable regiont and the bunch parameters, such as length and
height: then we track particle trajsctories using the discrete model.

In this report we construct the bunch shape twice, without miuzing
the two models; Tirst from the continuous model, then Trom the
discrets model. & comparison of the two bunches reveals that the
second bunch is tilted with respect to the first.

The angle between axes of the two bunches depends on the ratioco of
the synchrotron tune to the number of cavitiss. The biggsr the ratio,
the largesr the angle.

In this report we review both models and compare some of  the
resulits coming independently from each model. The main conclusion is
that boith results are very close.The reason for such closeness 13 that
the ratlo of synchrotron tune to the number of (equally spaced)
accelerating cavities 13 very amall for the vast majority of existing
accelerators.
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1. CONTINUOUS MODEL

1.1 Basic equations and parameters.

In this section we will review the continuous model describing
longitudinal motion of charged particles. This model assumes that one
accelerating cavity acts continuously along the whole circumfersnce of
the machine. Then a synchrotron motion of non—-interacting particles

within the stationary bucket is governed by the equations:

‘L= qV 1 - =9 =
AE mﬁalncp - P eg_ (1)
with
- AE=E~ES, hw=2Tf,
2 . 2 2
eg—BsEs/hﬂ, 15 W (Rl Wy S
4 (22
z 2
T.=E./E,» p=i-1/7_ »
L g =Qs, Er=1r'§ .

where E,p are particle’'s energy and phase, subscripts rst refer to
the rest, synchronous and transition snergy, & is proton's charge, g
is charge of the ion subjsct to synchrotron motion, 8 9 is the ion
charge state { number of stripped slectrens), 8 is mass number, Ir is
ionic rest ensrgy per nucleon, V is {(total) peak voltage of RF system,
driven with the freguency f which is synochronized with the particle’s
revolution frequency @ as it is shown by (2}.‘ Mote that es{D bolow
transition {7§{%} and es}ﬂ above transition iTB}TL} . Dafinitions and
details on ion parameters are presented in Appendix A.

For the {—th particle, the nonlinear system (1) is solved sitarting

(4] {iy

from initial position 8E_ P, -




1.2 Hamiltonian and Bunch.

Eguations {1} lead to or can be derived from the Hamiltonian
H _ [ aE* gy,
{p.AE )= w[ §22+ :E§05¢ ] + arbitrary constant. {3}

This represents a conservation law: the sum of particle kinetic and
potential ensrgy (in appropriate canonical variables) is constant
during particle motion. {See Appendix B for basic terminology. )
The Hamiltonian {(3) has a dimension of eneray (Fig.1}).
it ﬁeceasary the Hamiltonian can be
normalized by an appropriate choice
of constant. One way to do it is to
make H as a positive—definitive
form: H20{or negative—definitiveHg0)
and to make minH=0 (mazH=0}.

For suample, by adding to (3}

the constant gquwV/ 27 we aest

i S
* RN R T R
' = 1V, 2 opEN TRASE cToRY
@ oo o e ooty

2 T =z
=

This form i= convenient for Fig.1. Hamiltonian surface
studying a motion after transition and its profection
. on the phase plane.
when e >0, H >0 (Fig.2).
s

&

On the other hand, by subtracting gquwV/2Z7® from {33 we get

2
H (p.08)= w[ 2B 3251;12%] ] (5)
..:es hin =
This Hamiltonian is more convenient before transition, when %ﬁﬁs Ifgo
{tFig.Z2). In both cases Hamiltonian eguations
dAE  _ oH dp _ OoH (&)
dt Jp 7 dt JAE

lead to {(1}. IF the initial conditions
for a particle are AE ,9@ then the
< o

Hamiltonian for such a particle has a

+ +
constant value of H{(AE . 3=H".
Lol o [=]

The trajiectory for that particle can

. 2. i e
‘ be sxpressed either implicitly F{'b 2. Hamiltonian surrac

of energy above transition.
+ *
H (g, a)=H (7)



or sxplicitly:

/

I+

AE = /29 [H‘/w + LV
=1 [} v

(8}
zV DEZg ] ] §8+}
in "2 ] . (8"

Fixed points of Hamiltonian surface H=H{og,AE) are found from

oH oH _ ()
BAE =0, 29 =0 .
These points are pairs (@=mn,AE=Q}, n=0,%1,22,... .

If & particle’'s trajectory is closed
in the vicinity of the fixed point,
then such & point is calied stable.
Otherwise, the fiued point is called
ungtable. 1t's sasy to see from the

perindicity conditions

H (g, 0= H*(AE,p:2m) , {10}

Plg.3. Hamiltonian surface
aof energy below transition.

that the stable fixed points {p=(Zn+i}w, AE=0} for H are unstable for
Hand the stable fixed points{p=2nwm, AE=0} for H are unstable for H.

The value of the Hamiltonian calculated at unstable fixed point is

a geparator. It is positive when e >0, negative when esiﬂ :
=3

I{i = +w—q—z
7

sep

(11}

1t separates trajectories of all particles with different initial

conditions into two classes — open and closed. According to (7Y each

trajectory can be uniguely characterized by the valus of its

Hamiltonian. Those trajectoriss for which

el < e,

are closed and those for which

lut| - |m

" are open.

A trajectory with

is called o separaitriz.

ony
o
(.
et



It consists of two branches intsrseciing sach other. Two branches of a
separatrix betwoen consecutive unstable fixed points compose a closed
trajectory called a bucket. The length of ths statiocnary bucket is 2.
There are h bucksis in the phase space, the configuration of buckeis
periodically repesating itself. A4ll trajectories within the bucksoits are
closed, while all trajectoriss ouwtside the buckets are open. At  the
center of each buckst thers is sxactly one stable fixed point.

The =set of particles within a bucket is called a bunch. The precise
definition is more flexible; it savs a bunch comprises 25% or- 100% or
77% {or whatever} percentags of ths total bucket particles.

The actual number of buckets in an accelerator is determinsd by the
harmonic number B . In the AGS we have h=12 buckets lying along the
807.075m circumference of machine. So, we have 807/712= 67.25m as the
length of each bucket.

In this report we =ill deal esxclusively with energies below
transition {esiﬂ} and with the Hamiltonian H on the interval {—T,T) .
For these reasons we will drop the superscript " for the Hamiltﬁnian

and will write H instead of H and —le_| instead of &_-

1.3 Synchrotron Frequency and Synchrotron Tune.

In the phase space {(P,8E} 2 particis’s iraisectory is a closed curve
and ¥or that reason the particise’s motion is periodic i.2. it perforss

synchrotron oscillations. The particle’s aynchrotron freguency L.

depends on the value of that particie’'s Hamiltonian:

z
Hip, A = ~0] =22 + L5378 | | (15)
..-;(E‘st T <

which is a constant, Ho, detsrmined by particle’s initial positions:

H =H(AE_.¢_) (16)

The larger the absolute value of H, the smaller is +the synchrotron
frequency =0i(H).

bhile a particle movss along a trajectory, its coordinates AE=AE{t},

p=p{(L1}) are changing with tim= according to  (13). Howsver, the

Hamiltonian doesn’'t chanogse: its  value Ho remains the same as  at

initial position AE=AED, p=p_ as wall as at other positions, Say .

AE=0, p=r>0, or AE=AE, >0,0=0 ,



for which

2
we AE
b
II = —quv“Siﬁzg = T STV . (173
o T Z ;tesi

In the same way as we characterize a trajectory by its Hamiltonian, we
can do it using, instead, either ™ or AEb. The advantage of this is
that we can get rid of the initial conditions for the given particle,
and can characterize it by one invariant of motion: sithesr H; or ™ or

AEb'
Particles within a bunch have different snergies. Ths most snergetic
particleﬁ move along the ftrajectory which contains 31l the others.
Then for such a trajsctory, paramsters r,AE ,H are alled bunch
half-length, bunch half-helight, and bunch Hamiltontan {(Fig.4}.

We will apply subscript b o all

AE

bunch paramsters. Somstimes ¢ is &uhﬁ
P ‘ 13 haf-haight

called bunch _ (synchrotron)

amplitude, which should not fal=]

confused with particle amplitude

/ 2 2
Y AE +p which is not a constant of

motion, whils T is. The bunch

half-length r is a useful parameter

because it can be easily measured Flg.4.statlonary bucket & bunch.
experimentally.
The bunch half-length or half-height can be esupressed by the

counterpart o {17}

L1}

— r AE
b b
= /:!QV e_|'8ing~, r= Zarcsin|—————| . (18)
2 LAY
Y < fegl

From this the half-hs=ight of the bucketAEocan be found by taking r =mw:

b
e = /286 |

- {19)

The most important parameter of the motion is  the central
gynchrotron frequency Qg, which is often is referred to simply as  the
synchrotron fregusncy {(of a small amplitude). Actually it is  the
maximal synchrotron freguency. We can Find it by linearizing the
egquations of motion (1): setting Sin@e=p, which is a good approxzimation

for all the particles moving within a short bunch Ty 1.




Thus for a linear system we have instead of (1},

o3V, y = AE 24
AE—WEW P x P le,_t AE, (20}

and we reduce it to one equation of harmonic oscillations (e <0 }:

r o+ 2 qV

P = —u m"—!"fp . {21)
s

whose Treguency is what we call the {central) synchrotron freguency

Q= w /:—_g—;u—clll;;-{ ) (22)

If the synchrotron amplitude r is not small, then the synchrotron

{for small amplitude):

frequency depends on amplitude (=Q(r} (see Ref.1 for more details},
Synchrotron- (longltudinal) tune v=vir)y is the ratio of freguenciss
v={r)/ o . {23}

Most applications uwuse a central synchrotron tune

v =0 /0 =V/ﬁ'!%’:l_ ) (24)

which is often referred to simply as synchrotron tune. We’ll Ffollow

this tradition. The bucket half-height and tunes have a simple relation
AE = Z2v e | . (25}
0 =3

With the same accuracy as Sine¥p, onsg can rewrite (18) for short

bunches as

6V1@5§ AE,

- AEbzrbV/, s Pb=————~———— - {24)
/GVI eg l
v 27

27

If we can measure the bunch length experimentally, then with (18} or

{263 we can calculate the bunch height or bunch energy spread.




1.4. Dimensionless Equations.

Let us introduce a dimensionless time measured in wunits of synchrotron
perind and a dimensionless energy measured in units of bucket

half—height:

T = £ t, ﬂfﬁWQ.
{271
- e_d _td
SE = AEXAEO . = 3% mQOdt .
Then the dynamic sguations (1) will take the dimensionless form:
~0H t oo -
—;55-= ASE = Sing . ISE|L L, {281}
&H , I —
35E p =—2Z0E jel £ w, {29}
with the corrFesponding new Hamiltonian
2 2
H 3} o= — — 5in 2
. {SE, @) SE — 5in = s (30}
mhich is scaled to the old separator:
H = H/H . {31)
sep

The separabtriyx (bucket) sguation in phase space (Fig.5) is just

S5E =-i Cos® . {(z2) |
2 4
Bucket half-height is

L I 3= =
§ho Cosi=1. (33} SE

BE
Buckset smittance is
P
U ar T
e = 4fcoskde =8. (34} b\\\\\\y_’/////i =
< . "SF_"
The trajsctory equation of the particle
with sSynchrotron amplitude r» can  be

b
0
|

writkten as
.7 ) Fig.5. Dimensionless
SE = = Sin' 5 - Sin’ . {35) bucket and bunch.

1 {%5}) is an equation of the bunch boundary then the half-hesight of

‘ the bunch is "

gl — e __.b -
5~b— m —Sln2 - {3&)

RIHS




If the bunch half-lsngth i=s r

b ? then the bunch (longitudinal}

emittance is

™y .
e = &(r)= 4] /Sin’;b - 5in°% do = B[E(m)—il-—m)i{(m)} . (37)
o
where K(m)} and E{m) are completese elliptic integrals of the ist and 2nd
kind (see Appendix C for more details}. For a short bunch (Sing—zg—)
any particie within the bunch i=s governed by Hamilionian
2 2
H(SE,p) = — SE — ‘EP:—;—' ) (38
which means that the particle trajectory is an ellipse
2
[;%] + [fﬁ]z =1 . (39}
The bunch boundary is the same tvpe of ellipse with LA and thes ares
of this sllipse iz the short bunch emittancs:
2
g = TEE . {40)

2

The dimensional bunch half-height, half-lenagth, and esmittance ars then
= 1 =
AEb AEOS“b, Ty s & AEoe . (41}

where AED is a bucket half-height according to (1%) and {(24}.

In this ssction we have considered a continuous model of particle
dynamics. This model is good because it is simple and productive. It
gives us all the bunch paramsters we need. But how accurate is the
continuous model? How good is our  approximation which reduces  the
effect of ons or many localized cavities to one continuous cavity?
I=n't it extrems?

To syaming this extreme, we will go in the next section to another

extremz and then we'll compare the resulis from both.




2. DISCRETE MODEL

In this section we will review a discretse model describing
longitudinal motion of charged particles. Thizs model assumes that all
accelerating cavities are localized at one point of the machine ring
[21. The case of manvy point—-like cavities [21 will be discussed at the
end of this section. Below, subscript n will denote for any particle
its number of cavity traversals.

Then synchrotron motion of non—interacting particles for stationary

conditions is governed by the mapping squations:

{ OE ,,= OE +mv Sing . (1)

= — =¢,1,2,. . . -
P P, 41\7’!)05Eh . T

Thiz system can be reduced +to the system {1.2B)—-(1.2%) if wa

replace time differences by time derivatives:

[ St _6En+1— 6En ' _cPh-f-i—‘ ?
At : At ’
2%
AT = R At = 80— = 2wy ., {2)
o S W o
T = T +At ., T =t =0 .,
n+1 2] o Lo

For the {-th particlie, system (1),{(2} is solwved by iterations starting
~ 0 .

from initial position 6E(L,@{w.

g (=3

2.1. Stability.

To simplify ouwr analysis, we suppose that the bunch is short snough
to linsarize a non—linsar part of (1)} by putting Sing =¢p for any

particle in the bunch. MNow we are dealing with linear system

{6En+1= 5En+wvocpn+1 ¥

Prs™ @n—4nv°6En, n=0,4,2,. . . {3}

with given initial values ¢b’6Eo'



First let’'s see how stable this system is. Start with decoupling of
the svystem {(3}.
[ _ §En+1_ aEn = 7Imocpn-i-;i.’ [ Prss Py =—471:‘V°§En *
] GEY\ - 5En—-1=wvocpn ? cph _Cpn-d.:_q‘mvann—i’
. -«
— =3 — G - —
6En+1 EaEh+§Eh—1 W‘VO(CPY‘:'P!. (Pl"‘)} Cp'h-i'i chh-l—cph"i 4WV°{5Eh SEV\-‘.{)
L.
=4 v’ 5E ’ ) =—4n2v2¢ -
o n (=300 ¢]
Mow let us introduce a2 complex variable ({=Y-1 ):
gh=q)ﬁ+ 7‘,§En . n=0,1,2,. . . . {4)
Then we have a singles eguation
2
ol — S - =g = .
Z {Z—u _},_h+,_n_1 LI n=o,1,2,. . . (5
whers
B =ZmY_ . {56}
Because the Znd order difference sguation (5} is similar to the 2nd
prder differential squation, we sesk 2 gensral solution as a linear
combination of two particular solutions:
= =ﬁeien+BE;i9n = @ +i{8E_, n=o4z,... , {73
" 12} 2]
Here A,.B are complex constants {(amplitudes), which are determined by
a4+8 = @o+i6Eo= = , (8)
10 ~18 _ _
fie +he -z[4ﬂ+i6E“
whers @O,SEO arg initial wvalues, 6 is characteristic constant (step
angle}, and qh,SEi arg calculated from {3):
2
¢, =p —2usE_ , OE=8E +Bp = Bp +ci-pSreE . {9}
For z to be a solution of (3) it is necessary that step angle 6
satisfies a characteristic eguation when any particular solution from
{7) is being used for (Bl:
2 -
et¥ (z-p%1+e7 % = o, (10)
2
Cose = 1-L | (11)




-

N
Il
bt
%]

£
?

[
1

'UOS:,_i.!"ﬂT - {

Thiz is the stability condition. If it is satisfied., then solutions of
{7} and {3} are bounded, because tzhlﬁlﬁl+!51 for any n .

If || is =small, so then is 6, and there is the approximation oz .

2.2. Discrete conservation law

By substituting the sscond eguation of () into the first one, we

can rewrite this system as

[ oo
5 =z¢n+{1_“2}SEn’ n=0,1,2,. . . {14}

n+l

Introducing vecktors xn and the matrix M

P, i -2 '
X = . M =1} Ef 2 x {13}
" oleE z 1TW
N
we have instead of {(14) a matrix recurrence
xh+1=M 9Xn {1&}
2] =
or X =M .X . {173
k2l [
Mappings (146} and (17) are area preserving because
dat{Mi=1. (18}
The matrix M cannot be diagonalized, because in the sense  of matrix
theory M is not normal:
M'™M z MM", , (19)
Following Courant and Snyder (41, we'l1l reprzssnt
M= 1.Cos06 + J.8in6 , {20}
where
r i 4 .
z 2
zv 1-B 2y 12




ang

J=-1 , {322}
M'= I.Cosnd + J.8innd . {23)
Then
X = IX Cozsnd + JX Sinnd . {24}
12} (=] o

" Multiplving (24} by the matrix J we have, using (22):
JX = JX Co=ne — IX Sinnd . {23
g o O

Constructing scalar products we get from (243, (25}

(X X 3+(IX L IX ) = (X X j+(JX_,JX ) (26)

This is a conservation law. It savs that during the synchrotron motion
a gquadratic form on thg,left—hand side is the same as it was at  the
initial position.

This guadratic form we denote as Q for any vector X={9,3E) :
QiX3= (X, X+(JX,JX)= (27}
= ¢2+6E2 +(a@+65E}2+(7¢—a6E)2=
= { a2+72+1 ) cP2+2 {ap—ayviplE+{ o 62+1 3 SE =

4 4
=a 9 +2a, pOE +a, OE

where
2 =z . =1 | 2 2 20 -
a, =0 +y +1= T E e a, ,=op-ay= S ¢ @S0 +p Fl= 7 > (28}
b— -, A—1
and B
—a. =Q(X }= a_@ +2a _¢ SE +a_ SE- (293
3a o 10 P =Py P OB TP, O, -

In the phase plane (9,0E} the sequence of points (@h,SEh}, determined

by the mapping {17}, is lies along the closed trajectory

Qlp,8E)+a, = O . | {3

A conservation law (248) or (30) tells us that trajectory (30) is an
invariant of motion, so arse the parameters of the trajecitory, like its

semi-axes and arsa {emittance}.




2.3. Bunch parameters and orientation

fis we will see, trajectory (30} is an ellipse whose axes are tilted
with respect to co—ordinate axes(Fig.6)}. We wish to find parameters of
this ellipse. If the ellipse confines all the particles, then the
ellipse’s parameters are bunch parameters.

In order to get the eguation of the sllipse

in the canonical form
2

fz-!—yzzi
a b

let us introduce new {(tilted) axes I,Y

with the same origin as old axes and

with the rotation angle 2

T = @:.Cos® +3E.5ind , Flg.6. Tilted bunch on
(323 the phasgse space.
Y =9:8ind +5E.Cos? ,
Zaiz =
tan2d = — ST {33y
217 P2 -

Then the semi axes @ and D can be expressed as
2 2
=—— P -
a_ /N, » b a/r, s {34)

whars A&,hé are the roois of the characteristic sguation:

2 2 -
A ——{a,11+a,22)7\, +(ana,22—a123—0. {353}
a a a, —-a 2
14 22 14 22 2 2.5 z
KL2=———§_—_ * (—-_§~——] ta,, = z(SiV@+4” ? o (36)
A
_ _ 2z _ 25
Aghy = 0,00, = z ° 373
4=p
The sllipse area {smittance)} is
mla,,| wla,, |Va—p"
e = wdb = = . {38)Y

— 5
4

24 —
a’i i a'22 0,12



2.4. Discrete model with N cavities

When M cavities are sgually spaced along the machine ring, then the

total wvoltage V is equally divided betwsen all N cavities. Then (1)

becomnes
Y,
SEh-H.: 5Eh+ ™ Bincpn+1’ {39)
TV
Pras= P~ A SE_ n=o,4,2,. . . N,N+1,. .. .

These equations describe changes in energy 8E and phase ¢ for particle
going from cavity to cavity M times and repeating this  process  again
and again. The only difference betwesn (3} and {1) is that tune v, in
{1}y is replaced by vo!M in {3?Y. This means that all the facts
following from (1)} which dependsed on tune will be the same Ffor the

case of M cavities after we replace v, by vofN - In particular
Y8 =2nvofM . {40)
and the angle € between sllipss axes and coordinate axess is

=z
tanZ® = Zu = 4wy /3N . {41)

IT i < 372 which is always the case then
P = W/ E-AD =2 w3, (429

3 e
where - O{ASCO .05 . (43
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:3.INTERPRETATTON OF BUNCH EXPERIMENTAL MEASUREMENTS

When we are dealing with a stationary bunch in an experiment, then the
first thing we look fTor 4is a "mountain ranga™ or bunch 1line
density distribution, which allows us to measure a longitudinal
projection of the bunch length. Having a
half—length we then can calculate all

the othzyr bunch parametesrs such Aas

half-height {energy spread) and
emititance. OFf course, we know fTrom the
stationary conditions all the other
numbers of interest—— total peak voltage

V. synchronous ensrgy Es, FF fregusncy

fx charge g, and sp on. If the bunch

would be an =llipse with the ANES
exactly aligned along coordinate axes in Fig.7.Hbrizontal bunch
phasa Space, then the measured and iis tine denstty.

{projected) length would be the exact bunch length‘(Fig.7).
Mow imagine an EﬁpEFiMEﬂtEF,JEEt’S call him Boss, who has gotten from

a mountain rangs the half-length r {radians}! of a short bunch. He asks

b
two theorists, let's call thes Tom and Mary, to calculate  ithe bunch

parameters: smittance, snergy spread and half-height.

3.1.Interpretation based on continuous model

Suppose Tom belisves in the continuous model, while Mary believes
in the discrete model. Tom immediately gets results. According to
{1.34) the bunch half-hesight {(dimensionlsss), which in his case Jjust

the energy spresd, is

b
5Eb=51n—,5- - {1}
This fTormula is not approximate, it's exact for short as well az  for

long bunches. For the short bunch (1) it can be written as
= F =2
6Eb T2 . (2}

Emittance with the same accuracy is due to {(Z2.3%9},

3
-
P
o
L4
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3.2.Interpretation based on discreie model

Mary considers the bunch as a tilted ellipse (Fig.8}.

S5he savs that the measured Ty iz not the

real bunch half-length, rather Ty is the
bunch right-most point P=1r, 6E=6Er. In
the vicinity of this point the particle’'s

trajectory o@=@{8E} doesn’'t change its

g—conrdinate:
g9 = 0 (4)
a%E BE=5E

Mary says the real bunch parameters should

be calculated from (2.34) and {(2.38).

For this she nesed to calculate Dygn which

Flg.8.T11ted bunch and

is part of trajectory sguation (2.30): ittes line density.

Qip.8E)+a,, = O,

"' z 2
1 = > yay =
Qi{@,8E) a, ¢ +Za p8E +a  BE" ,
whers
_ 5 _ oM _ =20
P 2z YT Tz BT z ¥
A4—1h 4—h 4=
and » 2
—_ = T
- a’aa 11([)0‘5“_ 12(PO§EO+Q'ZZSEO -

To calculate s it is necessary to know one point (QO,GEO) iving

{3}

(&)

(73

on

the trajectory {53. In Mary' s case such a point is P =T, s 6Eo=§Er.

b

Mary knows v, from sxperiment, but not SEP. The last can bhe Tound

b
solving both (43 and (53) simultaneciusly.

Indesd, after differentiating {8} with respect to 3E one can

{taking into account {4} },

oE = 12 T
r oo g Mo
22
Trom which (p =1 .0E =0E 1.
mﬁ b- o r -
2
A% Y > 5 rz
el = e e S = e -
aha a rb a''e
22

‘Now the bunch parameters can be found. The bunch half—length is

major semi-axis G of the ellipse .

by

get

(2}

{7

the




According to (2.34),.(2.38) and {7}

lag 1 /s+voean’ 1 =z
= 2TVIEAR o LG L Vi I8 {10)

a3
o- Lol
-/ AIZ bv g 24
Bunch half-height is
/5—#@+4 2 e 12
a8
Bunch emittance is
2
T
e = nQb= -EE Va-u® . (12)

Th=2 highest point {6Eh,¢h) of the bunch determines the s=snergy
trajectory

In the vicinity of this point the particle’s

spread 6Eh
SE=8E{p} doesn’t change its SE—coordinate:
SE
2 t‘ =0 . (13)
(P.-
Then
aQ — T Sl ——
55! - a0 F2a, 08, = O
CP—T'h
a
- 12
2F (th-—a——bﬁ—.h - (14)
14

and substituting (14} inito Q+aﬁfﬂ she gets

After taking =7 from {7}
T T
~ b =3 .
SE = 7 P= M - {153}

R

b



3.3. Comparison of the iwo interpretations

Tom and Mary submitted their resulis to esxperimenter Boss, and
remindasd him to multiply results by AEofrDm £1.12) in order to convert
half-height, half-spread and emittance to dimensional form. Boss put

Tom and Marvy’'s resulis along with his own L in the following table.

Table 1.
bunch experimental continuous discrete ratio
parameter value model model discrete/continuous
phazse
half-spread - Ty
bunch (12 1+2u? >

"y Tpt 24 ) 24 i
half-length
bunch 23 ™y 1—i 2) l—i 2 i
half-height z 3 otETgH P ;
bunch energy Ty ™
half-spread = P i =1
bunch 2 2 i 2
v T, T, Vg——; 1_;” <1
emi ance = 3 b
bunch tilt N M
0 N
angle 3 =

—t ook guvys, Boss sayvs, the only common thing coming fTrom vour
modelis iz the snergy spread {(Fig.?7)! 411 the other paramsters differ

from 4% up to 17X iT w would be equal to 1.

How can I trust you or your theories’ AE

—Don’' t worry Boss, Mary savs, according to h
{Z2.40) p=Eﬂv°!N is small number, because v, bz Q, ¥
is the synchrotron tune and N is the number of 0 Q, o
accelerating cavities. For any machine, my
estimate is p<.1l, so vour worsit estimate between
our two models will be 0,174 not 174 . Se=e Fﬂg.Q.Energy spread is
for example the following table, where I put the only common

parameter for

for svery machine its largest possible tune. two modele




- 21 -
Table 2.
species: protons heavy electrons
ions
accelerator: AGS_Booster AGS ABGS_Booster AGS  RHIC LEP

the largest s
synchrotron LO0E O3 .01 .01 5.100 .1
tune v,

number of 2 io 2 1 2 128

cavities N

step angle (rodians: . 007 LO2 .03 08 2 1'73—5 3035
]J,—“-“E’Evo!!ﬂ idagrees)’aqo 1.080 1.80 3.60 i‘}D .283

bunch tilt 18° =25° 5° 1‘29 go ‘qu

angle $=u/3

bunch tilt 24° > o o o o
angle for N=1i T

Al
1
I..h
[N
b
b
D
b
I3

~Now I see, Boss says, +that vour two models provide very close
ragulits,. So, I guess, we have no problems anyeore.

~Mary does, Tom said.

—What's that?

—¥ou see, sometimes being impatient, Mary combines all the machine
cavities into onse sffective cavity and does longitudinal  fracking  in
her compuisr for such a simplifisd discrete model. This means ¥=1 and
for 2 number of cases where the synchrotron tune is large, there will
be a large exaggeration in the bunch parameters coming from a such a
discrete model. For exzamplez, the proton bunch tilt angle Tor the ABS
will be 3.4  and for electrons in LEP it will he 12° {=ee tabls last

ror ).
3.4.Final experiment

—Mow vou are confusing me again, says Boss. You  have  too many
tricks with vour models and computers, and I have too little time to
check or study them. Moreover, I'm not sure that vou know all  the
differences between vour models today. Mavbe you'll find some new one
tomorrow. So, my point is to check the problem experimentally. Give me
2 hint how I can ses in the control room whether a stationary bunch is

horizontal in phase space or a bunch is tilted?




~Bwitch the voltage off,—simultaneously said Tom and Mary,— and sse
how the mountain range will changs its shapse during 3—-34 revoluations
while debunching. We have already done thi=z in our computers.

—I¥ the bunch was horizontal before debunching, then during
debunching the mountain range will change like in Fig.10, - said Tom.

-On the other hand,—said Marvy,— debunching will Ilpok liks that in

Fig.il if the bunch was originally tilted.

-Pi a Pi ~-Pi . B Pi
F1g.10.Peak is decreasing Flg.11.Peak is increasing
monotonically for the then falling for the
tiltaed bunch.

horlizontal bunch.

~Good bve, said Boss, I'm going to the Control Room to debunch oz

stationary bunch.

—bood luck, said Tom and Mary, we are going to our computers...
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APPENDIX A

Atomtic terminology for the pedestrian.

ATOMIC UNITS.

Electron charge e=l1.6.10 ' ©
Eleciron mass =9.1.10 2" g

Proton mass = 1.{37'10—24 o

Atomic mass unit {amu} =i.6én1‘3'—24 a}

Hydrogen mass = 1.,008amu

Most of the mass of the atom iz in its central particle called the
nucleus. SBurrpunding the nucleus are enough negatively charged
electrons to make the normal atom neutral. The nucleus of any slement
is composed of protonsg and neutrons. The word NMUCIEON is used as a
generic term meaning proton or neubtron. & neubtron has no charge.

Atomiec number 7 is the number of protons in the nuclews. It
is also the ordering number of a chemical element in the HMendeleev
table. Muclear charge is

g=Ze . (1)

Mass number A is equal to the sum of protons and neutrons in  the
nucleus. The number of neutrons in the nucleus is N=4-7. Nurclei having
the same / but different N are called tsotopes.

Atomic unit of mass {amu) is 112th of the mass of a carbon isotope
with a mass number A=12.

1f @ siectrons have been removed from the neutral atom, ithen the
latter becomes an {on with the charge state § .

Hers is a part of the table from the Booster Design Manual (Tabhle 1i-1i).
it shows the atomic characteristics for some ions.

CHARGE ATOMIC MASS IONIC REST
ION STATE NUMBER NUMBER ENERGY
4] A A CeV/nucl=on
P +1 i i 0.93828
d +1 1 2 0.93781
G +5 & iz D.PE125
s 14 14 z2 O.23E047
Au +33 79 197 D.F31246




APPENDIX B
Does the particle possess a potential energy?

The purpose of this section is to clarify terminology pertaining to
the basic concepts of classical mechanics such as potential energy and
conservation of energy. Good terminology should be =3 working tool not
the source of misconception. Speaking about “potentical energy of a
particle” we shouldnt forget that there is no such thing as the
potential energy of a particle. =, lot’s taltk about some prime
concepts of classical mechanics and the resulting terminology.

Everything that follows is taken from the Bible of theoretical
physics -~ Course of Theoretical Physics by Landau and Lifshitz —
with a4 minimum of my own comments. Bacause most of the folloving text
will be a quotation from Mechanics 151 I will use instead of guotation
marks a standard font iike this. My own commentary  I°LL tvpe with a

small font like the two paragraphs you just read.
One of the fundamental concepts of mechanics is that of a particle.

By this we mean a body whose dimensions may be neglected in describing
its motion. Let us consider a system of particles which interact with
one ancither but with no other bodies. This iz called a closed system.
It is found that interaction betwesn the particles can be described by
adding to the Lagramgian for non—interacting particles a ceritain
function of coordinates, which depends on the natuwre of interaction.
Denoting this function by —U we have

L '_‘:}: %mivt _quisqzv---)p (1}

where q; is the position of the {—th particle. This is the general
1 2
form of the Lagrangian for = closed system. The sum ZEZEWﬁUi is rcallsd

the kinetic energy, and U the potential energy. of the system.

I have 1o ewmphasize thot potential energy describes the interaction
betveen all the particles of the closed system, not the anergy state
of the individual particls, The only Ll*év‘.hg that belongs to the

individual i-th particle iz its kinetic energy . 5mi"ui' .

The potential energy is defined only to within an additive constant,
which has no 2ffect on the =guations of motion. This iz a particular
case of the non—unigueness of the Lagrangian, which is defined only to
within an additive total time derivative ofany function of coordinates
and time. The most natuwral and most uswal way of choosing  this
constant is such that the potential energy tends +to zero as  the
distances betweesn the particles tend o infinity.

Hitherto we have spoken only of clossed systems. Let us now consider
a system 4 which is not closed and interacts with another svstem B

executing & given motion. In such a case we say that the system 4




moves in & given exbernal Tield idue to syvstem By. Since the esguations
at motion are ocbitained From the principls of lsmast action by
independentiy varving esach of the coordinates {(i.2. by procesding as
it remainder were given gquantities), we can Tind the Lagrangian LA of
the svstem 4 by using the Lagrangian L of the whole system 4+B  and
replacing the coordinates ag therein by given functions of time.
Assuming that the system 4+B is closed, we have L=T;(qa’éA}+I;€qn’én}“
—U(qA,qB), where the first two terms are the kinetic energies of the
systems 4 and B and the third term is their combined potential energy.
Substituting fTor a, the given functions of time and omitiing the term
T{qB{t),éB(t)} which depends on tims only, and is therefors the total
time derivativg}of a Ffunction of time., we bbiain

L,=T (q,.q-Utlaq, .q (t}1. (2)
Thus the motion of a system in an external field is described by a
Lagrangian of the usual type, the only difference being that the
potential energy may depend explicitly on time. For exampls, when a
single particis moves in an external field. the general Fform of the

Lagrangian is

fod
onstt

L= %myz—Uiq,t}. {

Again we  have  hers snergy [l of interaction between a field changing ag
a given function of time and particle with coordinate g

For any closed system there is a wvalid expression

oL
d : - - {4)
QT[ 2a—-L } =0
The guantity in the brackets is called the ENErgY of the system:
oL
E = 2 éf_f'- L. (3}
d4q,.

1
The snesrgy aof the system can be written as the sum of two guite

different terms: kinetic energy which depends on the cooordinates and

velocities, and the potential ensrgy, which depends on the coordinates
of the particles and on fime:

E=Ttq,q »+Uiq.t}. (6}

Lot us consider the conservation law resulting from the homogenelity

of time. By wvirtue of thiz homogeneity, the Lagrangian of a closed

svesiem doss not depend esxplicitly on time. The total time derivative
of the Lagrangian will be zeroc and energy 5 will be constant.



Th2 law of conservation of ensrgy is valid not only For clossd
systems, but alsc for thoss in a coconsitant external  field {(i.s.one
independent of timej: the only properity of the Lagrangian used in  the
above derivation, namely that it does not involve the time euplicitly,
iz s2till wvalid. In such a case an energy conservation law is

E=T{q,q 3»+Uigq)= constant. {7}
Mechanical systems whose energy is cunserged_ are sometimes called
conservative system.

EXAMPLE 1. when o mechanical pendulum moves without resistance in
the Earth’s gravitational field, then the energy conserves:

E:%m(zci)z—mg&:oscp =constant.

wWhose snergy is conserved? Pendulum’s energy? No.

The system’s ensergy. The system of two interacting particles is
pendulum—-Earth. For that problem Earth’'s kinetic enargy is Zero
and the potential energy of itnteraction between pendulum and
Earth is U=mgécosq.

we also can say that the sasystem s a pendulum-field. An Earth
field. After all, we can say vwhatever we wvant, including that
the pendulum energy is conserved. But the real sense of such
terminology ie  that which was  just described. If ve will not

forget it there will never be a misunderstanding.

EXAMPLE 2. When proton  within a stationary bunch exercises a
synchrotron motion then the energy is conserved:

H{(3E.p) = — SE*— Sinzg = constant.
whose anergy is conserved? Proton’z snergy? No.
The system’s energy. The system of two interacting “particles”
is_. the proten and an RF  cavity. In thie case Lt i1s Dbstter to
say that the system is the proton and the cavity field.
A potential  energy -Sin {(pr2} is not the “proton’s potential
ensrgy”. It iz potential energy of tnteraction between a proton
and cavity’s electrical fisld.
If we «agree with a such understanding and remember it then ve
can use any words including "a potential energy of o particle".
I'm sorry to bother you with the obvious truth, but the cloar
terminology should help our mutual understanding and can save
time.
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APPENDIX C

Calculation of bunch longitudinal emittance

introducing new paramsters m_._k —j_—m

"o . and variable f:
&= 4I/Sinz”o —sinZde = L ginte k.8int = 5ing ,
2 2 2
y/%,~ Sinzgr=kvcgsg, dep = 2k CosEdt
p=c = {=o, @=r = {=mw 2. Vfl—mSinzg
w2 T2
_ 4. | 2mecos®rar _ m—7+1—m5in2§dg - B[E{m}_mimm)]_ (1)
/1-m3in" ¢ 1-msin”
The power se?ies for £ and K are [o]
E(m)= ;—5[1— mo_ ; z_ 2:6 o ] [m|<1, {2}
E{mi= g—;[ ;? ﬁa ...}, lm] < {32
which gives us
i s(m) = E—(1-m)K = —g-ﬂ—l[i+ ?—— gi ...]. {4}

I have found that th= best single parabola fitting to this

over the interval |[ml<di is

s{m}

elative srror for this

E{m}—ﬂ%Kim} m omi L 76E +.20%m) .

SXpression

expression is less than 34 .



