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Following is a review of beam ellipse transport in the Heavy Ion Transfer 
Line (HITL) which currently links the Tandem van de Gradand the 
AGS. Sections 1-3 review some basic optics principles. Section 4 is an 
overview of the line. Sections 5-8 discuss beam ellipse transport in various 
sections of the line. 

1 Beam Ellipse Optics 

1.1 The Beam Ellipse 

Let zo and 26 be the position and angle of a beam particle with respect to 
the reference trajectory at a point so along a beam line. Then the position, 
z, and angle, z‘, of the particle (with respect to the reference trajectory) 
at the point s along the beam line are given by 

Z = MZo, (1) 

where 

and 

is the transfer matrix between so and s. 

Now suppose that the beam at so is contained within the ellipse 

70”; + 2 a o z o 4  + pox: = E ,  

1 

(4) 



where 
PO70 - = 1, (5) 

and T E  is the area of the ellipse. Let us determine how the region 
contained in this ellipse is transformed in going from so to s. To do so we 
write equation (4) in matrix form: 

Po -a0 Z W Z o = E ,  Eo= ( -ao 7 0 )  , 

where a t denotes the transpose of the vector or matrjx. The matrix Eo is 
symmetric and has unit determinant: 

E: = I E ~ ,  ~ E ~ I =  ~ 0 7 0  - a; = 1. 

Now using (1) in (6) we find 

Z ~ E - ~ Z  = E ,  E = M E ~ M ~ ,  

and it follows from (7) and (3) that 

Et = MEAM+ = IMEoM+ = E, IEI = lMllEollMtl = 1. 

Thus, E is symmetric and has unit determinant, and we can write 

It follows that the ellipse defined by Eo is transformed into another ellipse 
defined by E = MEoMt in going from so to s. Now the area, T E ,  enclosed 
by the ellipses is conserved, and any particle inside (outside) the ellipse at 
so will also be inside (outside) the ellipse at 5. The beam ellipse-i.e. the 
(smallest) ellipse which contains the particles in the beam-therefore 
provides a convenient way of keeping track of the particles as they travel 
along a beam line. Thus, instead of using equation (1) to track each 
particle as it moves along the beam line, we use the second of equations (8) 
to determine the evolution of the beam ellipse. 

A beam ellipse defined by 
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is shown in Figure 1. Expressing (11) as 

E p  = x2 + (ax + p x y ,  (12) 

and as 
e7 = X I 2  + (7% + (13) 

we see that the maximum ic and x' of the ellipse are given by f i  and f l  
respectively. Thus f i  and f l  define the width and the divergence of 
the beam. The evolution a€ P and the other ellipse parameters along the- 
beam line can be obtained by multiplying the matricies in equation (8): 

a = -MllMZlh + (1 + 2Ml2M21)aO - M12M2270, (15) 

7 = - 2M2lM22aO + M&70- (16) 

We note that here we have considered the evolution of the beam ellipse in 
one plane only. As discussed in reference (2) the beam particles are in fact 
contained within a six-dimensional ellipsoid characterized by a real, 
symmetric, positive definite six-by-six matrix E. The evolution of this 
ellipsoid is given by the second of equations (8) with the two-by-two 
matrix, M, replaced by thle six-by-six transfer matrix. The extent of the 
beam in each dimension, i:, is given by a, where E;; are the diagonal 
elements of E. 

1.2 Ellipse Evolutioa in a Drift 

Here we consider the evolution of the beam ellipse in a drift from so to 8. 

The transfer matrix is given by 

which when inserted into equations (14-16) yields 

3 



Thus the width of the beam vasies in a drift, but the divergence remains 
constant. 

Differentiating (18) and (19) with respect to s we find 

p ' ( s )  = -2ao + 2(s - So)70 = - 2 4 4 ,  (21) 

p"(s )  = 270. (22) 

Since 7 is always positive, it follows that in a drift P ( s )  reaches a minimum 
value-i.e. a waist-where a(.) = 0. 

1.3 Ellipse Evolution in a Thin Lens 

When the transfer matrix 

M = (  -1/F " )  1 (23) 

for a thin lens with focal length, F, is inserted into equations (14-16) one 
finds 

P = P o  (24) 

(25) 

(26) 

a = (YO + Po/F 

7 = Po/F2 + 2ao/F + 70. 
Here we see that P, and hence the width of the beam, are not changed by 
the tbin lens. However Q and 7, and hence the divergence, do change. 
Equation (25) shows that the change in a is proportional to 
inversely proportional to the focal length. This is analogus to the formula 

and 

X I  = X; - XO/F (27) 

for the change in x' in a thin lens. 

1.4 Point-to-Point Imaging 

Now suppose we have a ticansfer matrix, M, with element M12 = 0. This 
matrix is of the form 

M =  (: &,) 
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where m is called the magnification. Inserting this matrix into equation (1) 
we find 

x = m x o ,  x' = ax0 + xk fm. (29)  

Here we see that the image, 2, of 00 is independent of zb and hence the 
matrix is said to image a point to a point. The &st of equations (29) 
shows that the image is magnified by the factor rn. 
Inserting the matrix, M, into equations (14-16) we find 

a = a0 - amPo 

7 = To/m2 - 2uao f sn + a2Po. 
(31) 

(32) 
Thus the beam width is magnified by the factor m. If m = 1 then /3 = PO 
and the width of the beam remains unchanged. However the divergence of 
the beam does change if a is not zero. 

1.5 Waist-t o- Waist Imaging 

If the transfer matrix, M, i s  such that a beam ellipse with a waist at so 
evolves into a beam ellipse with a waist at s, then the matrix is said to 
image a waist to a waist. The conditions for which this occurs-i.e. the 
conditions for waist-to-waist imaging-are obtained by setting a = a0 = 0 
in equations (14-16). Doing this we find 

Here we see that unlike the condition, AI12 = 0, for point-to-point imaging, 
which is independent of the ellipse parameters, the condition for 
waist-to-waist imaging depends on the ellipse parameter Po. If we impose 
the additional condition, 1M& = Mi2, then it follows from (33) that 
p = pU. In this case we also have 7 = 70 and hence both the width and 
divergence of the beam arce unchanged. This is an advantage over the 
point-to-point case in which the divergence does, in general, change even 
when p = Po. It should also be noted that waist-to-waist imaging is not 
possible when the condition for point-to-point imaging is satisfied (and 
M21 # 0). In this case equation (33) implies that PO = 0 and the 
divergence of the beam is infinite. 
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1.6 Symmetry Theorem 

Now suppose we have a beam line which is symmetric about the point so. 
This means that if M is the transfer matrix from 80 - s to SO, and N is the 
transfer matrix from so to $0 + s, then 

N = uM~u, 

(Note that it follows from (34) that 

cT=(; h ) .  (34) 

N, is equal to the matrix M with its 
two diagonal elements interchanged.) If we let 

be the matricies which characterize the beam ellipse at the points so - s, 
so, and SO 4- s, then we have 

E~ = ME-M~,  E+ = N E ~ N +  = U M ~ E ~ U M ~ T .  (36) 

Now if-cyo = 0-i.e. if the beam has a waist at sa-then aEou = Ea1 and 
it follows that 

E+ = U M ~ E ~ ~ M U  = VEI~U. (37) 
Thus p+ = ,B-, 7+ = 7-, and a+ = -a-. It is also true that if ,B+ = ,B- 
and -cy+ = --cy- then a. = O .  We therefore have the following result: If a 
beam line is symmetric about the point so then the beam has a waist at 
this point if, and only if, /3+ = p- and -cy+ = --cy-. It can also be shown 
that if a beam line is symmetric about the point so and ,B+ = p-,  
a+ = a_, then a+ = a- = 0. 

1.7 Acceptance of a Beam Pipe 

Consider a beam pipe with half-aperture, a, which runs from s = 0 to 
5 = L. In order for a beam with emittance, TE, to pass through the pipe 
we must have 

(38) 2 
&as I a 

where ,Bmax is the maximum value p ( s )  reaches in the pipe. The largest 
beam emittance that can  pass through the pipe is called the acceptance of 
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the pipe. To determine the acceptance, we need to find ellipse parameters 
at the pipe's entrance such that Pmax is as small as possible. This requires 
that p ( s )  reach a waist haljf way through the pipe-i.e. at s = L/2-in 
which case we have p(0 )  = p ( L )  = Pmax. Let us determine the value of 
W = /3(L/2) for which pmax is smallest. Using a ( L / 2 )  = 0 and 
7 ( L / 2 )  = 1 / W  in 

p(s )  = w t 

and 

(18) and (19) we have 

(40) 
L L 

a(&) = -- 
2W' a ( s )  = -(s - L / 2 ) / W ,  a(0) = - 

2 w '  
Then differentiating &ax with respect to W we find 

Thus &ax is smallest when W = L/2 ,  in which case we have 

The acceptance of the pipe is then 

TTE = s a 2 / L  (43) 

with a(0) = 1 and p(0)  = L at the pipe's entrance. 

Now suppose we place a tlhin focusing lens with focal length 

F = P(L) /2  = L/2  (44) 

at the end of the beam pipe. It follows from ( 2 5 )  that the lens will change 
a from -1 to 1 and we can therefore transport the beam through another 
section of pipe with half-atperture a and length L. Continuing in this way 
we can build a beam line and transport the beam as far as we like. If we 
want to increase the acceptance of the beam line we must decrease the 
length, L,  of the sections of pipe and decrease the focal lengths of the lenses 
accordingly. This, of course, only works in one plane. In the other plane 
the lenses are defocusing and the beam eventually becomes too large to be 
contained in the beam pipe. In order to transport the beam an arbitrary 
distance in both planes one must use both focusing and defocusing lenses. 

7 



I 

T 1 
0 . 

1.8 Beam Ellipse Transport with a Symmetric Doublet Cell 

One scheme for transporting the beam ellipse makes use of quadrupole 
doublets. A doublet consists of a focusing and a defocusing quadrupole 
separated by a distance, d, which is usually small compared to the focal 
lengths of the lenses. We call the arrangement of two doublets shown in 
Figure 2 a symmetric doublet cell. The cell runs from s = 0 to 
s = 2(21+ d) and the labels QF and QD denote horizontal focusing and 
defocusing quadrupoles. The quadrupoles are all excited with the same 
current and the cell is symmetric about its center, s = 21 i- d.  
Let 

be the transfer matrix from s = 0 to s = 21 + d. Since the cell is symmetric 
about its center, the transfer matrix from s = 21 + d to s = 2(21+ d )  is then 

and the total transfer matrix for the cell is 

M1in422 + M12M21 2M12M22 
M11M22 + M12M2l 

T = N M =  

The phase advance, +, of the cell is given by 

with the requirement that sin + have the same sign as 2'12. 

Now let (ag, Po) and (a, P )  be the beam ellipse parameters at the 
beginning and end of the cell. In order to maximize the beam emittance 
that can pass through the cell, we require that the beam ellipse have a 
waist half way between the two doublets. If we also require that the beam 
ellipse have the same parameters at the beginning and end of the cell, then 
it follows from the symmetry theorem of section 1.6 that a g  = a = 0. Thus 
Po and the transfer matrix M must satisfy the condition for waist-to-waist 
imaging: 
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Since an ellipse which enters the cell with parameters a0 = 0 and 
by (49) leaves the cell with the same parameters, one can transport the 
ellipse through an arbitrary number of such cells. In the horizontal plane 
the P parameter of this ellipse reaches a maximum value, Pmai, in the QF 
quadrupoles. Jn the vertical plane the same maximum is reached in the 
QD quadrupoles. The acceptance of the cell will be largest when Pmax 
(which depends on d, I ,  and the strength of the quadrupoles) is smallest. 

given 

' 

1.9 Beam Ellipse Transport with a FODO Cell 

Another scheme for transporting the beam ellipse is the FODO 
arrangement shown in Figure 3. The cell runs from s = 0, which is the 
center of the first quadrupole, to s = 2L, which is the center of the last 
quadrupole. The quadrupoles are spaced a distance L apart (from center 
to center), and the labels QF and QD denote horizontal focusing and 
defocusing quadrupoles. The quadrupoles are all excited with the same 
current and the cell is symmetric about its center, s = L. 
If we require that the beam ellipse have the same parameters at the 
beginning and end of the cell, then it follows from the symmetry of the cell 
that CY must be zero at the center of each quadrupole. At the begining of 
the cell /3 is given by equation (49) where M;j are the elements of the 
transfer matrix from the beginning to the center of the cell. 

In the horizontal plane p reaches a maximum value, 

in the QF quadrupoles. h. the vertical plane the same maximum is reached 
in the QD quadrupoles. The acceptance of the cell will be largest when 
pmax (which depends on L and the strength of the quadrupoles) is smallest. 

2 Bending Magnets with Pole Face Rotation 

In reference (1) it is shown that the horizontal and vertical transfer 
matricies for a bending magnet (in the hard-edge approximation) with 
rotated pole faces are 
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and 

where a and p are the pole face rotation angles at the entrance and exit of 
the bend as indicated in Figure 4, p is the radius of curvature of the 
reference trajectory, and 0 is the bend angle. 

Now let M be any two-by-two transfer matrix. Then if M21 is not zero we 
have 

where 

f = -l/M21, L1 = (M22 - l)/MZl, Lz = (M11 - 1)/M21. (54) 

Thus M can be expressed as a drift followed by a thin lens followed by 
another driit. If MH and IM17 are expressed in this way, then the drift 
lengths define the principle planes and the thin lens defines the focusing 
strength of the bend. For the case in which a = P one can use (51) and 
(52) in (54) to determine the a for which the focusing strength of the bend 
is the same in the horizontal and vertical planes. 

3 Achromatic Bends 

Consider the arrangement of two 8' bends and four quadrupoles shown in 
Figure 5. The two QF (horizontal focusing) quads are excited with current 
I1 and the two QD (horizontal defocusing) quads are excited with current 
Iz. Each bend has radius of curvature p, and pole faces rotated by angle CY. 
The entire arrangement is symmetric about the point half-way between the 
bends and therefore has (horizontal) transfer matrix 

Ir = A B A ~ C ~ C A B A  (55) 

where ABA is the transfer matrix for each bend and C is the transfer 
matrix from the exit of the first bend to the center of the whole 
arrangement. 
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In order t o  treat off-momentum particles, the matricies in (55) must 
include the dispersion, D, and it's derivative, D'. Thus we have 

1 0 0  case psine 
A =  ( tana) /p  1 0 (- s inB) /p  cos B ( 0 0 1 ) ,  .=( 0 0 1  

0 1 0  

0 1  0 0 1  
c =  (4" c 2 1  2: ' ) ,  u = (  1 0 0 ) .  (57) 

where, as shown in reference (l), 

D = p(1-   COS^), D' = sine. (58) 

Now we can write 
B = LQL (59) 

where 
1 x 0  l o a  

L = ( O  0 0 1  1 O ) ,  Q = ( - q  0 0 1  1 b ) ,  (60) 

X = ( I 3 1 1  - 1)/B21, u = D - AD', b = D', q = -B21. (61) 

Then we have 

T = ALPLA, P = QNQ, N = C R ~ R ,  R = CAL. (62) 

The entire arrangement is achromatic if and only if PI3 = P23 = 0. Using 
(60) in (62) we find 

lD13 = Nlzb = 2bR12R22, (63) 

Thus the condition for achromaticity becomes 

This condition imposes only one constraint on the currents 11 and Iz. If we 
require that R22 = 0 in the vertical plane as well, then 1 1  and 1 2  will be 
completely specfied. 
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We note that in the horizontal plane R is the transfer matrix from the 
principle plane near the exit of the first bend to the point haKway 
between the two bends. The condition, R22 = 0, is then just the condition 
for point-to-parallel imaging between these two points. (A discussion of 
point-to-parallel imaging m,ay be found in reference 1.) 

4 HITL Overview 

The design of the EITL is based on beam transport calculations performed 
by J. D. Larson and T. G .  Bobinson with Larson's code OPTIC II. These 
calculations were repeated <and checked by H. N. Brown with the 
TRANSPORT code. 

Figure 6 is a schematic diagram of the HITL showing the various sections 
into which the line is divided. Sections 11-23 contain 37 quadrupoles and 
three pairs of horizontal bending magnets as indicated in the figure. The 
quadrupoles have a steel length of 6.0 inches and an effective length of 8.0 
inches. The magnetic field gradient in each quadrupole is 0.25 T/m per 
amp. The pole-faces of ea& bending magnet are rotated to provide equal 
focusing strengths in the horizontal and vertical planes (as discussed in 
section 2), and each pair of bending magnets forms a bending section 
which is achromatic. The radius of curvature is 60 inches in the 90" bends 
and 30 inches in the 24" and 69" bends. 

After acceleration in Tandem van de Graaf MP7, the heavy ion beam is 
focused by a quadrupole doublet and analyzed by the first 90" bending 
magnet. Image slits located between the two 90" bends allow for energy 
stabilization of MP7 and form the object point of the second 90" bend. 
The final stripping of the ions occurs in a carbon foil located between the 
two bends. Any ions left with unwanted charge states after the final 
stripping are swept out of the beam by the second 90" bend. The two 
horizontal focusing quadrupoles between the two bends are adjusted to 
make the total 180" bend achromatic. The four quadrupoles just 
downstream of the second 90" bend serve as a matching section which 
matches the parameters of the beam ellipse emerging from the bend to 
those required for transport through the rest of the transfer line. In the 
remaining sections (13-23) of the line the beam ellipse is transported 
through two 24" bends, two 69" bends, and is then matched to the AGS 
lattice. The details of this transport are discussed in the following sections 

12 



where the results of beam transport calculations are presented. These 
calculations treat the quadrupoles and dipoles in the hard-edge 
approximation and have been carried out for the case in. which the particle 
momentumis 0.225 GeV/c per proton charge. (It should be noted that the 
calculations assume the transfer line lies in a plane. The line does in fact 
have a downward pitch of 3.3 milliradians between the second 24" bend 
and the first 69" bend, and has a downward pitch of 5.4" between the two 
69O bends. This results in a small coupling between the horizontal and 
vertical planes which is not included in the calculations.) 

5 The HITL Cell (Sections 13 and 14) 

HITL Sections 13 and 14 contain four quadrupoles-l3QH1,13QV1, 
14QV1, and 14QH1-which are positioned to form the symmetric doublet 
cell described in section 1.8. (QH and QV refer to Horizontal and Vertical 
focusing quadrupoles respectively.) The cell runs from profile monitor 
12MW165 (s = 0) to 14WW240 (s = 2(d + 21)) as indicated in Figure 7. 
The quads are all excited with the same current, I, and d = 18 inches, 
1 = 1438 inches. 

One can make best use of the available aperture in the cell if the matching 
section upsteam of section 13 is tuned so that the beam ellipse enters the 
cell (at 12MW165) with parameters a = 0 and ,f3 = PO given by equation 
(49). As discussed in section 1.8, the cell will then image a waist to a 
waist, and the beam ellipse will emerge from the cell (at 14MW240) with 
the same parameters it ha,d at 12MW165. For each current, I, one can 
compute Po(I ) ,  which can then be used with Q = 0 in equation (14) to 
obtain p ( s ) .  In the horizontal plane P ( 5 )  reaches it's maximum value, 
,dmax(1), in the QH quads. In the vertical plane the same maximum is 
reached in the QV quads. 

Figures 8 and 9 are plots of pmaX(l) which show that waist-to-waist 
imaging is only possible for currents in the regions 0 < I < 3.69 and 
4.16 < I < 5.57 (amps). As one approaches the end-points of these regions 
Pmax becomes infinite. In the region between 0 and 3.69 amps, &x(I) 
reaches a minimum value of 89 meters. A slightly larger minimum (96 
meters) is reached in the region between 4.16 and 5.57 amps. 

Historically the HITL cell has been operated at a current of about 5.0 
amps (when the particle imomentum is 0.225 GeV/c per proton charge). 
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At this current P o  = 13.8 meters in the horizontal plane and 22.9 meters in 
the vertical plane, &ax = 110 meters, and the phase advance $ = 255'. 
Figures 10-14 show the behavior of pmax(I), po(I),  and the phase advance 
near I = 5.0 amps. Figures 15 and 16 are plots of P ( s )  at this current. 

If the HITL cell is operated at a higher current, say I = 5.52 amps, then 
Po = 3.8 meters in the horizontal plane and 5.4 meters in the vertical 
plane, Pmax = 350 meters, and the phase advance y$ = 331". Figures 17 
and 18 are plots of p ( s )  at this current. 

It is interesting to compare the HITL symmetric doublet cell with a FODO 
cell (described in section 1.9) constructed of quadrupoles with the same 
strength per amp. If we let L = 2 + d/2 in Figure 3 and compute Pmax(I) 
using equation (50), we find that Pmax reaches it's smallest value (122 
meters) when I = 0.5 amps. Thus the FODO cell has approximately the 
same acceptance as the HITL cell but requires only one tenth as much 
current. Figure 19 is a plot of P ( s )  for the FODO cell with I = 0.5 amps. 

6 The 24" Bends (Sections 15-19) 

The beam ellipse emerges &om the HITL cell and enters section 15 at 
profile monitor 14MW240 with parameters a = 0 and p = po(I).  It is then 
transported through sections 15-19 which contain 12 quadrupoles and two 
24' bends as indicated in Figure 20. Here L1 = 1438, L2 = 1138, LJ = 665, 
Lb = 289,Lk = 1118, L', = 1488, dl  = 18, and d2 = 29 (all in inches). The 
pole faces at the entrance and exit of each bend are rotated by 7.09" to 
achieve equal focusing strengths in the horizontal and vertical planes, and 
the currents in quadrupoles 17QH1,17QV1, 17QV2, and 17QH2 are 
adjusted so that the two 24' bends are achromatic as discussed in section 
3. These currents are found (by computation) to be I1 = 8.50 amps and 
I2 = 8.05 amps (when the particle momentum per proton charge is 0.225 
GeV/c), where I ,  is the current in 17QH1 and 17QH2, and I2 is the 
current in 17QV1 and 17QV2. The currents in quadrupoles 15QH1, 
15QV1, 16QV1, 16QH1, 18QH1, 18QVl,19QV1, and 19QH1 are adjusted 
so that the beam ellipse leaves section 19 (at profile monitor 19MW250) 
with the same parameters it had at 14MW240. Since the placement of 
elements in sections 15-19 is approximately symmetric about the point 
half-way between the two 24' bends, one can tune the quadrupole currents 
so that the ellipse parameter p(s)  is symmetric about this point. The 
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currents in 19QH1,19QVl, 18QV1, and 18QH1 should then approximately 
equal the currents in 15QH1, 15QV1, 16QV1, and 16QH1 respectively. 

The quadrupole currents required to insure that the beam ellipse has the 
same parameters (i.e. a = 0 and /3 = Po(1 ) )  at 14MW240 and 19MW250 
are not unique. One set of currents which meets this requirement for the 
case in which the HITL cell current is 5.0 amps is listed in Table I. 

Table I: Quad currents (amps). 
(HITL cell I = 5.0 amps) 

Quad Current Quad Current 
15QH1 5.16 19QH1 5.16 
15QVl 5.17 19QVl 5.17 
l6QVl 7.16 18QVl 7.14 
16QHl 7.17 l8QHl 7.15 

Figures 21-24 are the corresponding plots of p ( s ) .  Another set of currents 
is listed in Table 11 and Figures 25-28 are the corresponding plots of P(s) .  

Table II: Quad currents (amps). 
(HITL cell I = 5.0 amps) 

Quad Current Quad Current 
l5QHl 5.00 19QH1 5.00 
15QV1 5.05 19QVl 5.05 
16QVl 7.17 18QV1 7.14 
16QH1 7.17 18QH1 7.14 

For the case in which the HITL cell current is increased to 5.52 amps a 
possible set of currents is :listed in Table III and Figures 29-32 are the 
corresponding plots of P ( s ) .  

Table Ill Quad currents (amps). 
(HITL cell I = 5.52 amps) 

Quad Current Quad Current 
15QHl 5.40 19QH1 5.40 
l5QVl 5.40 19QVl 5.40 
16QVl 7.35 l8QVl 7.32 
16QH1 7.41 l8QHl 7.38 

(All currents have been obtained for the case in which the particle 
momentum per proton charge is 0.225 GeV/c.) 
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7 The 69" Bends (Sections 20-22) 

The beam ellipse enters section 20 at profile monitor 19MW250 with 
parameters CY = 0 and p = ,6"(I), and is transported through sections 
20-22 which contain eight quadrupoles and two 69" bends as indicated in 
Figure 33. Here L1 = 1488, L2 = 1118, L3 = 639, Lb = 585, dl  = 18, 
d2 = 40, and d3 = 27 (all in inches). The pole faces at the entrance and 
exit of each bend are rotated by 20.26' to achieve equal focusing strengths 
in the horizontal and vertical planes, and the currents in quadrupoles 
22QH1,22QV17 22QV2, and 22QH2 are adjusted so that the two bends 
are achromatic as discussed in section 3. The currents required for 
achromaticity are found (by computation) to be I1 = 6.15 amps and 
I2 = 5.98 amps (when the particle momentum per proton charge is 0.225 
GeV/c), where I1 is the current in 22QH1 and 22QH2, and I2 is the 
current in 22QV1 and 22QV2. 
The transport of the beam ellipse through sections 20-22 is dominated by 
the strong focusing effect of the 69" bends. One finds that in order to keep 
beta from becoming too large between the bends, it must be made 
s&ciently large in quadrupoles 21QV1 and 21QHl. The currents in 
quadrupoles 20QHl72OQV1, 21QV1, 2lQHl must therefore be adjusted so 
that an optimum condition is reached in which beta is as small as possible 
in both locations. One proceedes by first adjusting the currents in 20QH1 
and 2OQV1 so that the maximum beta in 21QVl and 21QH1 is the same 
in the horizontal and vertical planes. Then the currents in 21QV1 and 
21QH1 are adjusted so that the maximum beta between the two bends is 
the same in the horizontal and vertical planes. If the maximum beta 
between the bends is larger (smaller) than the maximum beta in 2lQVl 
and 21QH1, then the currents in 20QH1 and 20QV1 must be increased 
(decreased) until the maximum beta is the same in both locations. Table 
IV lists the quadrupole currents required to achieve this optimum 
condition for the case in which the HITL cell current I = 5.0 amps (and 
LY = 0, p = ,&(I) at 19MW250). Figures 34-37 are the corresponding plots 
of p ( s ) .  At profile monitor 22MW115 a = -1.27, p = 0.97 (meters) in the 
horizontal plane, and a = -1.33, p = 0.89 in the vertical plane. 
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Quad 
20QHl 
20QV1 
2lQVl  
218Hl  

For the case in which the IKITL cell current is 5.52 amps the quadrupole 
currents are listed in Table V and Figures 38-41 are the corresponding 
plots of p ( s ) .  At profile monitor 22MW115 a = -1.20, p = 0.92 (meters) 
in the horizontal plane, and a = -1.32, i.3 = 0.85 in the vertical plane. 

. 

Current 
5.62 
5.64 
6.84 
6.91 

Table V: Quad currents (amps). 
(HITL cell I = 5.52 amps) 

I Quad I .  Current I 
20QH1 
20QV1 
21QV1 J 21QH1 7.27 

(All  currents have been obtained for the case in which the particle 
momentum per proton charge is 0.225 GeV/c.) 

8 Matching to the AGS (Section 23) 

The beam ellipse enters section 23 at profile monitor 22MW115 with the 
parameters given in the previous section. Section 23 contains seven 
quadrupoles and an electrostatic inflector as indicated in Figure 42. Here 
L1 = 102, La = 82, L3 = 39, L4 = 100, dl = 18, d2 = 22 (all in inches), and 
LI = 2.0 (meters). The quadrupoles are tuned to  match the beam ellipse 
parameters to  the AGS lattice parameters a t  the exit of the inflector. They 
are excited as two triplets with currents I1, 4 , 1 3 ,  and 4 as shown in 
Table VI. 
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Quad Current Quad 
23QV1 I1 23QV2 
23QH1 I2 23QH3 
23QH2 I2 23QV4 
23QV2 I1 

g2= ( a x ~ ~ . 0 ) 2 +  ( P x  Pxo - Pxo )2+ ( % QyO - "are )’. (66) 

Current 
I3 ’ 

I4 
I3 

they will be matched to the AGS lattice whenever 

u(Il,I2,I3,I4) = 0- (67) 

For any set of currents, a(I1, I2, Is, 14) is a measure of how well the beam 
ellipse parameters are matched to the AGS lattice. The closer CT is to zero 
the better the match. For a given set of ellipse parameters at 22MW115, a 
simple grid search of the four-dimensional space of currents locates the 
currents for which equation (67) is satisfied. For the case in which the 
HITL cell current is 5.0 amps (and the beam ellipse is transported to 
22Mw115 as discussed in the previous sections) one finds I1 = 17.3, 
I2 = 13.3,Is = 10.3, and 14 = 13.2 (amps). The corresponding plots of 
@(.) in section 23 are shown in Figures 43 and 44. If the HITL cell current 
is increased to 5.52 amps one finds I1 = 17.2, I2 = 13.25, I3 = 10.7, and 
I4 = 13.9 (amps). The corresponding plots of p(s )  are shown in F i v e s  45 
and 46. (All currents have been obtained for the case in which the particle 
momentum per proton charge is 0.225 GeV/c.) 

One can determine the sensitivity.of the match4.e. the sensitivity of 
a-to the currents by varying each current in turn while keeping the other 
currents fixed. If the currents are varied about the point for which u = 0, 
one finds that u will increase from zero to one when the variations in I I ,  
1 2 , 1 3 ,  and 14 are 0.1, 0.05, 0.5, and 0.7 (amps) respectively. The match is 
therefore most sensitive to I1 and I2 and least sensitive to I3 and I4. 
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FIGURES 1-3 
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Figure 1. The beam ellipse. 
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Figure 2. The symmetric doublet cell. 
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Figure 3. The FODO cell. 
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FIGURES 4-5 

TRAJECTORY 

Figure 4. Bending magnet with pole-face rotation. 

Figure 5. Achromatic bends. 
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FIGURE 6 
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Figure 6. The Heavy Ion Transfer Line. 
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FIGURES 7-9 

HITL SECTIONS 13 - 14 
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Figure 7. The HITL cell. 
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Figures 8 and 9: HITL cell Pmax vs I. 

4 



18 

16 

14 

12 

10 

FIGURES 10-14 (HITL Cell) 
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Figures 11 and 12: Horz(x) and Vert(y) ,&(I). 
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Figures 13 and 14: / 3 g o / / 3 z ~  vs I, and phase advance $(I). 
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FIGURES 15-19 (HITL and FODO Cells) 
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Figures 15 and 16: Horz and Vert /3(s), I = 5.0. 
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Figures 17 and 18: Horz and Vert J?(s), I = 5.52. 

20a I 

3110 

I I I I I 

S (METERS I 
0 20 ua  60 80 100 120 

Figure 19. FODO cell P(s) ,  I = 0.5. 
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FIGURE 20 

HI'TL SECTIONS 15 - 19 
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Figure 20. HITL sections 15-19. 
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FIGURES 21-24 (HITL Sections 15-19) 
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Figures 21 and 22: Horz and Vert /3(s), I = 5.0. 
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Figures 23 and 24: Horz and Vert P ( s )  in bend region, I = 5.0. 
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FIGURES 25-28 (HITL Sections 15-19) 
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Figures 25 and 26: Horz and Vert p ( s ) ,  I = 5.0. 
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Figures 27 and 28: Horz and Vert p ( s )  in bend region, I = 5.0. 
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FIGURES 29-32 (HITL Sections 15-19) 
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Figures 29 and 30: Horz and Vert P ( s ) ,  I = 5.52. 

Figures 31 and 32: Horz and Vert P ( s )  in bend region, I = 5.52. 
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FIGURE 33 

HITL SECTIONS 20 - 22 

Figure 33. HITL sections 20-22. 
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FIGUREX 34-37 (HITL Sections 20-22) 
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Figures 34 and 35: Horz and Vert P ( s ) ,  I = 5.0. 
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Figures 36 and 37: P ( s )  near 1st and 2nd 69’ bends, I = 5.0. 
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FIGURES 38-41 (HITL Sections 20-22) 
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Figures 38 and 39: Horz and Vert ~ ( L T ) ,  I = 5.52. 
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Figures 40 and 41: P(s)  near 1st and 2nd 69' bends, I = 5.52. 
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FIGURE 42 

HITL SECTION 23 
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Figure 42. HITL section 23. 
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FIGURES 43-46 (HITL Section 23) 
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Figures 43 and 44: Sect. 23 Horz and Vert p(s) ,  I = 5.0. 
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Figures 45 and 46: Sect. 23 Horz and Vert p ( s ) ,  I = 5.52. 
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