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Measuring a Beam Emittance Using Linear Least-Square Analysis

J. Ryan

1. Summary

This report describes one method of measuring the beam emittance. Many
beam width measurements are fitted to the first order TRANSPORT Equation using
a least—-squared analysis procedure. The values and the standard deviations are
determined. The method was used to measure the Single-Bunch Extraction (SBE)
beam emittance to the 'D' line. Test programs and Fortran Source programs are
given illustrating the use of least-square analysis. The necessary measurements

to find a real emittance are also given.

2. Introduction

Four steps are necessary to find the characteristics of a beam in a trans-
port line. The necessary equation must be developed that expresses the beam
width as a function of the emittance or characteristics of the beam. The vari-
ables of this equation, which are transport matrix elements, must be found. The
horizontal or vertical width of the beam must be measured using flags, swics
(segmented wire ion chambers), multi-wire devices or other instrumentation. The
best emittance that uses these matrix elements and beam width measurements must

be determined using some form of least-square fitting.

3. The "Transport Equation"

This report will use the notation of the QTUNE program...AGS Tech. Note
181. This notation is the same as the TRANSPORT Program except that a 5 x 5
matrix is used for the magnetic elements instead of a 6 x 6 matrix which TRANS-
PORT uses. Only first order theory is considered.

The be;m is conmsidered a collection of particles traveling down a beam

line with the magnetic elements described with a matrix Rj.
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The characteristics of the beam particles at the output can be determined

from the following matrix equation:

(2] = (B) x (24) (2)
. For a 5 x 5 order matrix for the magnetic elements (R], Equation 2 can be
expanded to:

B B R R R Ry | BN
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o |R21 Raz  Rpz Ry Rgs %%

Y11 = |Rs1 Rz Ryz Ry, Rys| x |V (3)
] Ryl R4z Re3 Ryy Rys 1 %
| 61 |Rs1  Rsy  Rs3  Rsy  Rss | S

where standard TRANSPORT definitions apply to the particle characteristics:

X, ———- horizontal displacement of input ray, in inches, with respect to
assumed central trajectory.

0o ———= the angle (mr) that this inpﬁt ray makes in horizontal plane with
respect to central trajectory.

Y, —=-- vertical displacement of input ray (inches) with respect to cen-

tral trajectory.



$o ———— the angle (mr) that this input ray makes in vertical plane with re-
. spect to central trajectory.
8o ==—— AP/P = fractional momentum deviation (%) of this input ray and the

assumed central trajectory.

One set of units for the [R) matrix is:
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a1 (%i_g) 22 (Ei—é) “23 (%ﬁ_% “2 ﬁf—%) %25 EEf&]

“a1 iz ¥ 32 Gy “33 v 3 (ii : Rs (25

1 o 42 ) a3 S8 St G %45 )
®

R, (H% R, &® i, &9 X, &9 r, )

The beam is considered an array of particles that is described with a 5th
order symmetrical sigma ellipsoid. The symmetric SIGMA matrix at the beam line

input 1is:

(011 021 031 A as51]
021 022 932 942 052
(05) = |o3 032 033 043 053 (4)
91 942 943 I4s Ts54
051 52 953 054 055 |
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Xnax = maximum (half) width of the beam envelop in the X (bend)
plane at the given point (inches).

Omax = maximum (half) angular divergence of the beam envelope
in the X-bend plane.

Ymax = maximum (half) height of the beam envelope.

dmax = maximum (half) angular divergence of the beam envelope
in the Y (non-bend) plane.

Smax = half-width (1/2 AP/P) of the momentum interval being

transmitted by the system,

The input SIGMA matrix, (Go) can be obtained from the horizontal and

vertical Twiss

horizontal plane:

g11

021 <

g
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parameters of the beam if no x-y coupling is assumed. For the
o11 921 By oy
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where one set of dimensiomns for @, B, € are:



0 --— dimensionless
B --- kilo inch

€ =-=-- emittance -- inch-mrad

At any point in the beam line, the SIGMA matrix [01) can be found from the
input matrix (U¢) and the total (R) matrix to this point:

(07) = () x (0,) = (&T) (7

where (RI) is the transpose of (R). Equation 7 is the general TRANSPORT equa-
tion in matrix form.

Equation 4 shows that the maximum (half) width of the beam envelope in the
X plane at point 1 is X ., and the maximum (half) height of the beam

envelope is Y.

(Xpax)? = (071)1 : (8a)
(Ypax)? = (0331 (8b)
where the notation indicates evaluating these components at point 1 in the beam

line.

Expanding (7) and combining with (8) gives:
(Zmax)? = (011)1 = 011R112 + 2091R11R12 + 2031R11R13 + 2041R11R14
+ 2051R)1R]5 + OpgR1p? + 2033R19R13 + 2049R19R14 + 2053R12R15
+ 033R13% + 2043Rj3Ry4 + 2053R13Ry5
+ O4R 42 + 2054R14R15 ' (9a)

+ 0'55R152 = 15 terms.



(Ypax)? = (033)y = 011R312 + 2091 RyoRy1 + 2031R33R3; + 2041 R34Rsg
+ 205)R35R3y + OppR3p? + 203pR33R3p+ 2045R34R3p + 2055R35R3,
+ O33R332 + 2043R34R33 + 2053R35R33
+ O44R34% + 2054,R35R3y, ., (9b)
+ 055R352 = 15 terms.
Equation 9 is the general TRANSPORT Equatiomn.

Some simplifications can be made:

1. Assume that the input beam has no coupling between the horizontal and
vertical components...i.e., 03] = 04] = O5] = 039 = Oz = O59 = 053 = O54 = ¢
or:

(011 021 ¢ ¢ ¢
021 022 ¢ ¢ ¢

(ch) = ¢ ) 033 O43 ¢

¢ 0 043 Ony &

then Equation 9 reduces to:

(Xpax)? = O11R112 + 2091Ry Ryp + OgR1p? + O33R132 + 2043R 3Ry,
+ OsR142 + OgcRyc2 (10a)
44R1 4, 55R)5
(Ypax)? = O11R312 + 201R3pRg; + OppR3p2 + O33R332 + 20,3R34R33

+

O'44R342 + 0'55R352 : (10b)



2. Assume further that the above beam is passing through no skew magnetic
elements that couple the horizontal and vertical...i.e., Ryj3 = Ryy = Rg3 = Ry,
= R3; = R39p = Rg1s = Ryp = ¢. Assume also that the fractional momentum deviation
is constant...i.e., R5; = R59 = R53 = R5y4 = ¢ or

Ry; Ryp ¢ b Ris
Ryg;  Roa 0 ¢ Rys
(®R) = |o <b R33 R34  R3s)|

¢ 0 Rz Ry Rys

¢ ¢ ¢ b Rg5]

O11R11% + 2051R11Ry9 + T9oR)0? +-055Ry52 (11a)

]

(Xpax)?

(Ynax)? = 033R332 + 2043R33R3, + O44R342 + O55R352 (11b)

Equation 11 is the simplified TRANSPORT Equation which will be used

to solve for the emittance parameters. Note that if Rg5 is zero then Y, . is
independent of fractional momentum deviation.

Rewriting lla

(Xmax)z = 0'11(R112) + 091(2R11R12) + 0'22(R122) + 0'55(R152) (11a)

This linear equation with constant coefficients is very 'similar to the following

power series equation:
Y =a;;X+ a21X2 + a22X3 + 855X4

where Y = (Xmax)2
X corresponds to Rllz
X2 corresponds to 2R11Ry2
x3 corresponds to Rjg
x4 corresponds to R152



One would expect that the same least square analysis program for the
power series expansion could be used for the TRANSPORT equation if the X's were

replaced with the above expressions. The analysis would find the values of 0y,

0215 022+ -

4. The TRANSPORT Matrix (R)

To solve Equation 11 it is necessary to find the transport matrix from
point ¢, the input, to point 1, the location where the beam width is measured.
For each beam width measured, the (R) matrix needs to be known. The (R) matrix,
for each measurement, is determined from point ¢ or the input. The least square
fitting will find the beam parameters at point ¢.

The beam widths can be obtained at several points along the beam line or
at one point for different quad settings or a combination of both.

The QTUNE program has an option that will print out the total matrix (R)
from the input of the beam line to the end of all the beam line elements and
flags. Another option will print out the total matrix from the input to only
one point in the beam line. This latter is used if quads are varied and the
beam widths are measured at one point.

The TRANSPORT Program or TURTLE Program or other programs can be used to
find the total matrix (R). An assumed input beam emittance is needed. The
TRANSPORT Equations 9, 10, or 11 can be used to calculate the beam width from
the input beam and the (R) matrix printed and compared to the printed beam
width. This checks that the correct (R) matrix will be used in the least-square
analysis,

The total matrix [R] may also be found by calculating the individual
matrices for each of the beam line elements and multiplying. The BASIC program
is a convenient program to multiply and print matrices.,

Figure 1 shows part of a typical matrix printout from QTUNE. The TRANS-

PORT printout is similar.

5. The Beam Size

It is necessary to measure the beam size and the standard deviations of
the beam size to use the least square fitting procedure. The beam size can be

determined from foil irradiations, multiwire or single wire monitors, segmented
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wire ion chambers (swics) or flags. Sizes from different types of devices can
be combined in one analysis by weighting the measurements according to their
standard deviations. .

Foil measurements are obtained by irradiating an aluminum foil in a beam
line and then cutting the foil into narrow vertical strips for a horizontal pro-
file. The radiation on these strips, typically greater than .040 inch wide, is
measured and normalized to the strip weight., Plotting the strip width versus
radiation counts gives a profile display.

Multiwire devices can be inserted into a transport beam. These return a
current on each of approximately 30 wires which can be digitized and read into
a computer. Plotting these digitized signals versus the wire location gives a
profile display.

Swics are similar to the multiwire devices and produce a profile display.
Single wire devices can be stepped through the beam to produce a profile. These
single wire devices do not obtain a total profile for one pﬁlse but for several
pulses.

Flags can be inserted into a beam and then observed with a TV camera. The
flags do not produce a profile but a single spot size of the beam.

All devices, except the flags, produce a profile display similar to Figure
2. From this display it is necessary to obtain the beam width. This will be
defined in this report as the half width that includes 99% of the beam. This
997 half width can be obtained in different ways:

\_ex

Figure 2. Typical Profile Display

10



The beam can be assumed to have a Gaussian distribution. At the AGS this
' is probably true for the fast extracted beam (FEB), the single bunch extracted
beam (SBE), and the vertical plane of the slow extracted beam (SEB). It is not

true for the horizontal plane of the slow extracted beam.

The Gaussian description is:

G(x) = —2 e_%(x-x§§

ag
vV2mo2 (12)
where:
X, ——— mean or center of the beam
0 =-— standard deviation or sigma width of the beam
A —=-- area under the function
x —-— independent position variable
The 99% half width is 2.57 O.
. The most accurate means to find the three parameters of the Gaussian is to

apply a least-square analysis to the profile data Y(I). The linear least
square analysis subroutine LSQFIT of Appendix A can be used if Equation 12 is
changed to a linear equation. Taking the natural log of both sides of Equation
12 will produce a modified linear equation with constant coefficients. The
Fortran program TEST3 in Appendix A shows how values of Y(I) are used to find
the constants A, 0, and x, and their standard deviatioms. The 99% half width is
2.57 0 and the standard deviation of the 997 half width is 2.57 times the stan-
dard deviation of g.

Another means of determining the beam width is to use the general equation
for the centroid of a beam and the standard deviation of the beam as Weng and

Weisberg do:

o Z,:Yi (13)
1

11



Z( . 2y
= 1 Xl‘xo) 241
STD DEV = — Iv; (14)

i

The 99% half width is 2.57 (STD DEV)

For a true Gaussian function Equation 14 will find a smaller beam width
then Equation 12. For a profile with a standard deviation of 5 wires, the cal-
culation of Equation 14 will give a 4.5% smaller width if 25 wires are used and
33% smaller width if 13 wires are used.

It is also necessary to determine the standard deviation of the 99% half
width. Since a least squared analysis was not used to find the 997 half width,
this standard deviation can be estimated as 2.57 times the half-spacing of one
wire or less.

A less accurate means of finding the beam width can be used if oscillo-
scope photos are available of the profiles. If a Gaussian shaped beam is
assumed, then one can easily show from Equation 12 that the half width of the
beam at half magnitude is 1.177 0. Once O is obtained the 997 half width is
then calculated. The standard deviation can be estimated from the shape of the
profile and is usually about 50%Z to 100% of the wire spacing. This procedure
was used to find the beam widths for the SBE emittance calculation.

One should note that the profile data of Figure 2 is not directly received
from the instrumentation. The instrumentation data must be modified before
analyzing. Due to noise or inaccuracies one usually disregards data in the
tails of the profile that is below 5 percent of the peak signal for multiwire
devices, foil irradiations, and single wire devices. Weisberg has shown that ad-
ditional modifications must be made for swics. A no beam signal must be sub-
tracted from the swic data and then a background must be removed. For the CWO39
swic used for the SBE measurements, this background consists of a Gaussian
signal with a 0 of 5 wires that is matched to the swic signal in the tails.
After the offset and background are removed, the above procedures can be used.

Profile information is.not readily available from flag information. Some
profile information can be obtained by digitizing the TV scan signals. Normally
one can estimate the total width and height of the beam and this can be halved
to find the 99% half sizes. The standard deviation for flag measurements is usu-

ally large...about 30 or 40% of the 99% half size.

12



6. The Least Square Analysis

As described in Appendix A the LSQFIT subroutine will do a least square

fit to linear equations with constant coefficients.
Y = alxl(z) + a2X2(Z) + a3X3(z) + eee ‘ (15)

where z is the independent variable; X;(z)...X;(z) are known functions of the in-
dependent variable z but independent of the coefficients ajj aj...a, are con~
stant coefficients to be found and Y is the dependent variable.

A typical equation that fits this criteria is the power series equation:
Y = ajX + a9%2 + a3x3 (16)

The LSQFIT routine can be used directly for this power series equation to find
the coefficients aj, ajy, a3 given many sets of (x,y) data points. The standard
deviations of the Y points can be used as input to the subroutine and the aj
values with their standard deviations will be obtained. The analysis can be
performed if no weighting is used for the points...i.e., the accuracy of all the
points is known equally or if each point is known to a different accuracy.

If the fitting is good and the chi square is small, the standard deviation
of a; will be small and one will know a; accurately. If the fitting is poor be-
cause the data was measured poorly or because the equation does not fit the data
accurately, a large chi square will result with large standard deviations.

Using different modes of weighting the input data, the standard deviations of
the results can be made proportional to the accuracy of the data or to the accu-
racy of the fitting. Appendix A describes the different modes possible.

From Equation 1la and considering only the horizontal plane for simplic-
ity, one must do a least square analysis on Equation 17 to find the beam

parameters:
1
Zmax = (O11R112 + 203Ry1Ryp + OgaRyp? + Os5Ry52 )% (17)

This equation is not a linear equation with constant coefficients but can

be modified to a linear equation:

13



(Xnax)? = 011R112 + 2031R11Ryp + OgR1p? + O55Rp52 (11a)

A problem arises for this modified equation because the LSQFIT routine re-
turns the standard deviations of the O parameters and not the standard devia-
tions of the Twiss parameters that are calculated from these using Equation 5.
The standard deviation of X,,, is known but the standard deviations of (Xmax)z
must be input to LSQFIT.

Bevington shows that if the fluctuations in the observatioms of 0y;, Oj,,

099 are correlated and if:

A= f(O'll, 012 0'22) (18)
then:
the standard deviation of A can be found from the correlation or error matrix

and the partial derivatives as:

(s1e &% = (s16 °11)2(9%’ + (5160 )2 ’
+ (SIG 022)2(§g‘£‘ -
+ 2 (SIG 011012)2(3—%)(3_—) + 2(SIG 011022)2(%)(%)
+ 2 (816G 012022) 8012

Commonly (SIG A)?2 is known as the variance of A and (SIG 011)2 is the vari-

ance of O The standard deviation of A is SIG A and the standard deviation of

11°

93 is SIG O The coupling elements or covariances are terms as SIG 019995+

11°
This error matrix is available from the LSQFIT subroutine in the common/LSQ/
statement and is called SIGUV2. The elements of the matrix, for 3 unknowns,

are:

14



_ ) ) .
(s1iG 011) (s1¢c 94 021) (s1G 011022)
SIGUV2 = (816 o, .0 )2 (81G o )2 (siGc 0.0 )2 (20)
11721 21 21°22
(siG g, ,0 )2 (81G o0,.,0 )2 (S1G ¢ )2
L 11722 21722 22 A

As one can see, the diagonal elements of the matrix are the variances of
0119 Tg19 T99 and the off diagonal elements are the covariances. The matrix is
a symmetrical matrix. The partial derivatives must be evaluated exactly for

each function or can be approximated as:

of Af

30’11 AO'll

with o and ¢ constant.
12 22

The derivatives are found for the Gaussian function and for the Transport
equation in Appendix A.

Barton has shown that Equation (19) can also be expressed as a matrix equa~

tion:

T
(sic A2 = (g—f> (sxcuvz)(-?)if- (21)

where the matrix (3f/3) is the vector: F 3f ]

and the transpose of this vector is:

3L _ [ af df of
(5_) - [3011 3021 3022] (213)

The advantage of the matrix equation is in the computer calculation of the

standard deviations. A function subroutine.

15



Function  STDEV (DERIV)

as described in Appendix A, is used to calculate the standard deviation of any
function if the partial derivatives are given.

If one knows that the fluctuations in the data are uncorrelated, then the
covariances are zero. For example, if the standard deviatiom of X is

max
SIGXMAX, and XMAX is input data, then the standard deviation of (XMAX)2 is:

(XMAX)2 = £(XMAX) (22)

of )2

( STGXMAX) 2 (BXMAX

(s1e(xmax)2)?

(23)
(2¢xmax) s1cxMAX )2

or

SIG(XMAX)2 = 2(XMAX) SIGXMAX (24)

The standard deviation of (XMAX)2 is used as input to the LSQFIT subroutine.
After measureing the beam widths for several different quad settings or lo-
cations in the beamline, the TEST4 or TESTS5 programs in Appendix A can be used
to find the Twiss parameters of the beam. The matrix elements must be deter-

mined with a TRANSPORT or QTUNE type program.

7. The Necessary Measurements

As described in Appendix A, the TEST4, or TEST5 programs can be used to
find the beam parameters if several beam width measurements are made. Also
input to these programs are certain matrix elements of the Transport matrix from
the starting point to the measurement point. This is not sufficient information
to guarantee that an emittance will be found. Experimentally it has been shown
that if beam sizes can be measured on both sides of a waist, then an emittance
can usually be found. It sometimes happens in practice that due to power supply
limitations or device location limitations that beam sizes cannot be measured on
both sides of a waist at one location. This section will show what are the nec-

essary measurements.

16



Equation 4 gives the description of the 5th order symmetrical beam
ellipsoid. The projection of this ellipsoid on the x/0 plane is described with

the O small square matrix. This is normally called the horizontal

117 %217 %22
emittance and the Twiss parameters can be calculated from these using Equation
5. This projection is an ellipse, as given in the Transport Manual or SLAC 91

as:

2

0,0%" = 20,,X0 + 0, 87 =€ (25)
or, in terms of the Twiss parameters:
2 2 _
YX© + 20X0 + BO° = ¢ (26)
)
I VO
21 70'110'22

6
max o
//// 2' 8= rZlemax

The necessary conditions are that sufficient points be found on this el-
lipse so that the ellipse can be constructed. The points should be located on
widely spaced portions of the ellipse. The problem, therefore, reduces to find-
ing where on this input ellipse are the points located that are measured at the

measurement point. Equation 2 is used to solve this problem.

(x), = (&) = (5], (2)
(X)l is the vector that gives the value of X, 6, Y, ¢, and § at the mea-

surement point. (X)o is the vector at the input and the values of the X¢ and 6¢

components of [X)¢ give a point on the input ellipse.

(X)¢ = (R)7! x (x), (27)
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Experimentally one knows the X value at the measurement point, but does
. not know ‘the values of 9, Y, ¢, and 8. To solve this problem one must assume a
given beam input emittance and, then, propagate this beam through the R matrix
using TRANSPORT or QTUNE. Figure 1 gives a typical QTUNE or TRANSPORT printout
with the total R matrix and the beam matrix. As is standard, the maximum sizes
or /Gii and the correlation components are printed. The correlation compo-
nents are defined as, for example:
g

-2 (28)

r
21 V/o11029

One can easily show from the ellipse equation or the SLAC 91 report, that
the value of O when X = XMAX is

e_

= . 29
Ta1 emax (29)
One now knows the X and 0 components of the (X)l vector at the measurement
point. The beam ellipsoid has many projections on many planes... each described
‘ by a small square part of the 5 x 5 order sigma matrix. For example;

a) The X/6 plane ellipse is defined with o T

117 %227 991 117 %2’ T21
11 9337 T37 °F 9335 O335 T3y
c) The X/$ plane ellipse is defined with G119 Opnt Ohq OF 0119 Oppr Ty

11 %550 951 11? 9557 T51

or O
b) The X/Y plane ellipse is defined with O
d) The X/8 plane ellipse is defined with © or O r
Therefore, from Equation 29, one can write that the 5 components of the

(X)l y Vector are:

X, =X = Yo

1 max 11

81 = t51%ax = T21 02

Yy = T31%max - T31 Y933 (30)
5, = - r

[e]
]

= T410%nax = Ta1 "Ous
1= "51%ax - Ts51 "Oss

If no skew elements exist in the transport matrix or the beam matrix, T3

‘ and r,] are zero. For the SBE, however, Tsy is not zero.
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Once the (X)l, vector is found, then the (X)o vector can be found from
Equation 27 and a point is located on the X/8 ellipse. Actually, two points are
known since both XMAX and -XMAX are measured. The other point is diagomnally op-
posite the calculated point. This procedure can be used to determine if enough
widely spaced points are found to define the ellipse. Mathematically, if one
finds that all the points are crowded together in one portion of the ellipse,
then the TEST4 program may not be able to find an emmitance or the emittance
found may have a large standard deviation. Thus if one finds that power supply
or other limitations prevent measuring beam sizes on both sides of a waist at
one location, the solution may be to make one or more measurments in another lo-
cation.

This same procedure can be used if one tries to find the fractional momen-
tum deviation, §, of the input beém, from beam width measurements. For this
case one wants to find the ellipse in the X/§ plane and one needs to make suffi-
cient measurements so that points are found widely spaced on the X/S or Gll’
sy 951 ellipse.

One can show using this procedure that if one measures beam sizes at one
location on both sides of a waist that one will measure points spread out around

the ellipse.

8. Results for the SBE

The beam widths were measured from the swic at CWO39 for the SBE beam with
an intensity of 9.4TP in the AGS on October 19, 1983. This swic is located 39
feet from F13 after the CQl, CQ2, CQ3, and CQ4 quads. The horizontally
focussing quad CQl was varied over a wide range and the hori-zontal profiles
were photographed from an oscilloscope. The beam widths were determined from
the photographs by removing a background and then determining the 99% half width
from the half maximum points. The assumed standard deviations were about 10% of
the measured widths. Using a program similiar to TEST5 in Appendix A, Figure 3
shows the results of the horizontal and vertical fitting. For the horizontal
plane (xMAX)2 is plotted against the reciprocal of the equivalent horizontal
focal length of the group of four quadrupoles. This is the ~Ry9; element of the
total R matrix at the swic location and is approximately the reciprocal of the
focal length of CQlL since CQl was the strongest horizontal focussing guad. It

is also approximately proportional to the current in CQl. For the vertical
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plane (Ymax)2 is plotted agaisnt the equivalent vertical focal length element,
-R43. Also shown on the graphs are the fitted points with one standard devia-
tion error bars. This graph is not necessary for the computer analysis. The
vertical focussing quad CQ2 was varied for the vertical measurements. The R
matrices were calculated from calibrated computer readbacks of the currents from
the power supplies. The horizontal widths passed through a waist but the verti-
cal widths could only approach a waist.

The results of the least square analysis are shown in Figures 4a-5b. Also
included in the analysis is the beam size measured at the CF0ll flag. The re=-
sults for mode +1 and the unweighted mode +2 are given at F13.

The results for mode 1 or instrumental weighting using the measured stan-

dard deviations for the horizontal plane are:

Alpha = -3.69 , STD. DEV. = 0.737
Beta = 0,963 , STD., DEV. = 0.188 kilo inch
Epsilon = 0.0762, STD. DEV. = 0.0112 in-mrad

The results for mode 2 or no weighting for the horizontal plane are:

Alpha = -1.07 , STD, DEV. = 0.501
Beta = 0.314 , STD. DEV. = 0.113 kilo inch
Epsilon = 0.0709, STD. DEV. = 0.0193 in-mrad .

The assumed values for the horizontal plane were:

Alpha = -5.67
Beta = 2.26 kilo inch
Epsilon = 0.0755 in-mrad

The mode 1 results for the vertical plane are:

Alpha = 2.609 , STD. DEV. = 1.472
Beta = 0.444 , STD. DEV. = 0.199 kilo inch
Epsilon = 0.0495, STD. DEV. = 0.024 in-mrad
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The mode 2 results for the vertical plane are:

Alpha = 2.516 , STD. DEV. = 0.595
Beta = 0.437 , STD. DEV. = 0.0877 kilo inch
Epsilon = 0.0532, STD. DEV. = 0.0102 in-mrad

The assumed values for the vertical plane were:

Alpha = 0.987
Beta = 0.1457 kilo inch
Epsilon = 0.0755 in-mrad.

From the results one can see that the results for the horizontal plane are
good. The mode 1 results should be used in both planes since they include the
measured inaccuracies. The mode 2 results are added for comparison only. The
horizontal emittance is close to the assumed emittance and the standard devia-
tion is only 15% of the magnitude. The orientation of the horizontal emittance
ellipse is different from the assumed theoretical values. Figure 3 shows that
the beam size did pass through a horizontal waist.

The data for the vertical plane is less accurate because the beam sizes
did not pass through a waist. Because of power supply limitations, it was not pos-
sible to measure beam sizes on both sides of a waist. Also included in the anal-
ysis is a point from the flag at CFO0ll but with a large standard deviation. The
standard deviation for the vertical emittance size is about 507 of the magnitude
but the measured size is almost within one standard deviation of the theoretical
size. The fact that the measured data is within 1 standard deviation for about
one~third of the points on Figure 3 indicates that the standard deviations are
correct. Ninety-nine percent of the points should be within 2.57 standard
deviations.

One is usually concerned with the beam sizes down a beam line if the Twiss
parameters are known. The TRANSPORT or QIUNE program or Equations 5-11 can be
used. If one knows the standard deviations of the Twiss parameters, one can
find the standard deviation of the beam size down the transport line. Since
Equations 9-1]1 use the sigma elements to find the beam size, it is easier to cal-

culate the standard deviation of the beam sizes from the standard deviations of
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the sigma elements. These are also found in TEST4 and TEST5. The TEST4 program

shows how to calculate these standard deviations using the Function STDEV.

9. Conclusions

This report gives the first measurements of the SBE emitance. The results

are for 2.57 sigma or a 997 beam. They are, for the horizontal plane:

Alpha = -3.69 , STD. DEV. = 0.737
Beta = 0.963 , STD. DEV. = 0.188 kilo inch
Epsilon = 0.0762, STD. DEV. = 0.0112 in-mrad

The results for the vertical plane are:

Alpha = 2.609 , STD. DEV. = 1.472
Beta = 0.444 , STD. DEV. = 0.199 kilo inch
Epsilon = 0.0495, STD. DEV. = 0.024 in-mrad

The measurements were made with 9.4 TP in the AGS ring.

Besides providing the above data, this report shows in detail how one can
measure the beam parameters using linear least square analysis. As Witkover and
others have shown, it is a necessity when measuring the emittance that beam size
measurements be made at suitable locations in a beam line. Ideally, to prevent
small errors in size measurements from causing large standard deviations in the
Twiss parameters, the beam sizes should be measured on both sides of a waist. If
one or more quads are varied, the beam size at the measurement point should go
thru a waist in both planes or sufficient other points should be taken to con-
struct an ellipse in the proper plane at the input point. This conclusion is
emphasized by comparing the results for the SBE in the horizontal and vertical
planes. If one knows the Twiss parameters and their standard deviatioms, one
has a method to find the beam size and the standard deviation of the size any-
where in the beam line.

Another major conclusion of this report is a knowledge of how to use least
square fitting for any problem that can be described with a linear equation with

constant coefficients. This report is particularly useful for modified
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equations. The standard deviations are found for both standard equations and
modified equations.

Sufficient test programs are giveﬁ so that one can immediately find the
beam horizontal and vertical Twiss parameters. Fractional momentum deviation

can also be included in the analysis.
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e & o o s 0
-

+HORIZONTAL DATA

VINPUT DATA
J= 1 "XMAX: 0.2500 SIGXMAX= 0.1000 Rll= 71,00000 R12= 0.13400 R15= —~1:56030 DMOM=
J= 2 “XMAX= 0.1360 SIGXMAX= 0.0162 Rill= %06.46317 R12= 0.23968 R15= -0.20453 DMNOM=
J= 3 +MMAX= 0.1090 SIGXMAX= 0.0100 Rll= -=0.58472 Ri2= 0.21474 RI5= 0.01127 DMOM=
J= 4 XMAXE 0.0768 SIG = 0.0160 Rll= +0.70177 R12= 0.19062 R15= 0.21921 DMOM=
J= 5 -XMAX® 0.06601 SIGXMAX= 6.0100 Rils <0.81673 Ri12= 0.16832 RiS= 0.41269 DMOM=
J= 6 "XMAXs 0.1150 SIGXMAX= 0.0100 Rll= «0.8%671 R12= 0.15067 R15= 0.56539 DMON=
J= 7 ~XMAX= 0.1910 SIGXMA¥= @.0128 Rl1= +1.00169 R12=- 0.12915 R16= 0:75173 DMOM~
J= 8 "XMAXS 0.2460 SIGXMAR= 0.0128 Rli= ~1.09991 R12= 0.10897 R15= 0.92806 DMOMN-
J= 9 HMAX= 0.2130 SIGXMAX= 0.6206 Rl1= +1.05140 R12= 0.11894 RI5= 0184191 DMOI=
J= 10 =XMAX= 0.1860 SIGXMAR= 0.6218 Rll= <0.33992 R12= 0.26497 R15= -0.42139 DMOII=
J= 11 “XMAXx 0.2180 SIGXMA¥= 0.0218 Rll= ~0.277294 R12=' 0.27768 R15= ~06.53146 DMON=

INSTRUMENTAL. WEIGHTING -¥ WEIGHT =! 1/SIGMAY 2

J= 1 A= ,073451 SICMAAZ .067398!. FVALU= .0.0000E+00 CHISOR=! 0.:373337E+01
J= 2 A=  .281488 SIGMAAZ .629048° FVALU= '0.8924E-~-04 CHISQR=: 0.373337E+01
J= 3 - A=z 10157928 SIGMAA=: .112263! FVALU= 0.373337E+01

10,.2853E+02 CHISOR=

. COVARIANCE MATRIX
81G(1, 1)= §.472829E-05

SIG(2,1)= 2.055007VE~-04 SIG(2,2)= B.437607L-04"
SIG(3,1)= 6.754356E-04 SIG(3,2)= 3.656460E-03° SI1G(3,3)% 1.258960E-02

ALPHA= -8.69119: STD. DEVIATION = .0.73704

BETA=' 0.96318 . STD! DEVIATION = 0, 18784
EPSILON= .07625948 , STD! DEVIATION = ,01119430
BEAM FIT CHIS@GR = 0.556669E-02

¢ .7} = SQUARE OF WIDTH!OR WIDTH FIT OR STD. DEV. OF WIDTH:FIT SQUARED.
J= 1 WIDTHE 0.25000'.( ,06250) VIDTH FIT4 0.45248"( .20474) STD. 'DEVIATION= 0.0186
J= 2 WIDTH: 0.13600:( .01850) WIDTH FIT= 0.14276:( .062038) STD.:'DEVIATIONZ 0.0076
J'= 3 WIDTH= 6.10900(( .01188) WIDTH FIT= 0.08844.( .90782) STD.'DEVIATION= 0.0672
J = 4 WIDTH: 0.07630:( .00582) WIDTH FIT= €.066027 .( .00363) STD. 'DEVIATION= 0.0078
J = 5 WIDTH= 0.060107( .06361) 'WIDTH FIT= @.68123°( .00671) STD. 'DEVIATIONz 0.6653
J= 6 WIDTH= 0.11500(( .01322) /WIDTH FITs 0.11785.( .01389) STD.-'DEVIATION= 0.0649
J = 7 WIDTHz 0.19100( .63648) “WIDTH FIT= ©.168287( .02832) STD.:DEVIATIONZ 0.6644
J= 8 WIDTHE -0.24600.¢ .66052) WIDTH FIT= 0.21803:!( .64754) STD. 'DEVIATIONZ 0.6633
J'® 9 WIDTH= 0.213007( .04537) WIDTH FIT= 0.19334%( .983738) STD. 'DEVIATION= 0.0073
J =10 WIDTH: 0.186007( ,03460) ‘WIDTH FIT= ©.208405:( .941563) STD. DEVIATION= 0.6896
J'.=11 WIDTHZ = 0.21800:( .047¢52) "WIDTH FIT= ©.23574:( ,05557) STD. DEVIATION= 0.0167

Figure 4a.

Horizontal Data - Mode 1
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HORIZONTAL DATA

t INPUT DATA

J= 1 «XMAXE 0.2500 SIGXMAX- 0.0100 Rll= 71.00000 R12= 0.13400 R15= ~1.56630 DMOM= 6.12 MODE=

= 2 “XMNAX= 0.1360 SIGXMAX~ ©.0100 Ril= <0.46317 R12= 0.23968 R15= ~6./20453 DMOMN= ©.12 MODE=
J= 3 'XMAX= 0.1090 SIGXMAX= 6.0100 Ril= -$0.58472 R12= 0.21474 R15= 06.01127 DMOM= O.12 MODE=
J= 4 XMAX= 0.,0763 SIGHMAX= 0.0100 Ril= -+0.70177 R12= 0.19069 R15= ©6.:21921 DMOM= 6.12 NODL=
J= § “XMAX: 0.0601 SIGHMAX- 0.6100 Rlil= <0.81093 R12= 0.16832 RiS= 6.41269 DMOM= 6.12 MODE=
J= 6 XMAX= 0.1150 STIGXMAX= 0.01060 Rll= +~0.89671 Ri2= 0.15067 R15= 06.56539 DMOM= O.12 MODE=

= 7 “XMAX= 0,1910 SIGXMAX= 0.06160 Ril= +1.00169 Rl12= 8,12915 Rib= 675173 DMOM= 0.12 MODE=
J= 8 XMAXS 6.2460 SIGXMAX= 0.0160 Rll= ~1.09991 R12= 0,10897 R15= 6.92866 DMOM= 0.12 MODE=
J= 9 +XNMAX= 0.2130 SIGXMAX= 0.0160 Rll= +1.65140 R12= 0,11894 R15= 6184191 DMOM=.0.12 MODE=
J= 10 - XMAX= 0.1860 SIGXMAX= 0.6166 Rll= ~0.33992 R12= 9,.26497 R15= -0.42139 DMOM= @.12 MODE=
J= 11 XMAX= 0.2180 SIGXMAR= 0.0100 Rll= -0.2v794 R12= 0.27768 RI5= -6.53146 DMOM= ©.12 MODE=

RO WEIGHTING FOR MODIFIED EQUATIONS
J= 1 A= 1022252 SIGMAAs ,01038384% FVALU= [ 0.0000E+00 CHISQR=: 0i215956E+02
J= 2 A= JO?5676 SIGMAAHZ ,037828: FVALU= .0,.1193E-62 CHISQR=. 0.215956E+62
J= 83 A= 483179 SIGMAA=: , 178978 FVALU= [6.7288E+01 CHISQR=! 0.215956E+62

. COVARIANCE MATRIX

81G(1,1)= 1.174567E-04 :
SIG(2,1)= 3.027271E~-04 SIG(2,2)= 1.4360957E~-03"
S16(3,1)= 47182739E-04 . SIG(3,2)= 4.939827E-03: SIG(8,3)% 3.203309F-62 -

ALPHA= -~1.66758: STD. DEVIATION = '0.50076

BETA=! 0.31321 @ STD! DEVIATION = ©0,11349

EPSILON= 670885839 STD) DEVIATION = 61932522

BEAM FIT CHISQR = i0.247447E~-02 - :

( <) = SQUARE OF VWIDTH/OR WIDTH FIT OR STD. DEV. OF WIDTH'FIT SQUARED.
Jo= 1 WIDTHS 0,.25000.( .06250) 'WIDTH FIT= 0.29371.( .08627) STD.- DEVIATION: 0.0363 ( 16.0213)
J= 2 WIDTH=: 0.136001( .01850) WIDTH FITs 0.12779i( .01633) STD. DEVIATION= 0,06238 (. 0.0061)
J = 3 WIDTH= .0.10900/( .01188) WIDTH FIT= 0.10434i¢ .01089) STD. 'DEVIATION= 0.0208 ( :0.0043)
J = 4 WIDTH= 0.07680°( .00582) WIDTH FIT= ©.09469"( .00897) STD. 'DEVIATION=: 0.0186 (.i0.003%)
J= § WIDTH= ©.06010.( .06361) ‘WIDTH FIT= 0.10057.( .01011) STD. 'DEVIATION=:'0.0183 (.16.06037)
J = 6 WIDTH= 0.1156001( .01322) WIDTH FIT= 6.11409(( .01302) STD. 'DEVIATION= ©.0196 ( 10.0043)
J:= 7 WIDTH= 6.191007°¢( .03648) WIDTH FIT: @.13764(( .01894) STD.'DEVIATION= 6.0221 (:0.00661)
J.= 8 WIDTH= 0.24600.¢( .06052) WIDTH FIT=z . 0.16407"( .02692) STD. 'DEVIATIONZ @.62492 (.0.0082)
J:= 9 WIDTH= 0.21300.( .04537) "WIDTH FIT= 0.15971%C .02271) STD.:!DEVIATIONZ 0.6235 (:0.6071)
J:=10 WIDTH= 0.18600:( .03460) WIDTH FIT= 0.15944:.( .02542) STD.:!DEVIATION= 0.0272 (:0.6087)
J:=11 WIDTH= -0.21800.( .64752) SWIDTH FIT= ©.177097( .03136) STD.'DEVIATIONZ 0.6290 (:0.0163)
Figure 4b. Horizontal Data - Mode 2
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ERROR%S: 17.48
ERHRORR= —6.03
ERROR%E. ~4.28
ERROR%= 24.10
ERROR%= 67.33
ERROR%= ~0.79
ERROR%=-~27 .94
ERROR%=~33.30
ERROR%=-29 .24
ERROR%=~14.28
ERROR%=-18.77
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IVERTICAL DATA

INPUT DATA
J= 1 =YMAX: 0.2948 SIGYMAX= 0.0540 R359= < 1.666839 R34= 0.52856 R35= 0.00000
J= 2 «YMAXZ 0.2511 SIGYMAX= 0.0272 R33= 71.48376 R34= 0.48135 R36= 0100000
J= 8 =YMAXs 6.1992 SIGYMAX= 0.0272 R33= ~1.12022 R34= 0.38743 R35= 0.00000.
J= 4 =YMAX= 0.1938 SIGYMAX= 0.0272 R33= 10.94175 R34= 0.34132 R35= 0.00000
J=  § <YMAX= 0.1637 SIGYMAX= 6.9218 R33= "0.60082 R34= 0.25322 R35= 0.00000
J= 6 “YMAX= 0.13860 SIG = 0.0195 R33= 0.28299 R34= 0.17105 R35= 0.00000
J= 7 CYMAX= 0.0874 SIGYMAR= 0.0108 R33= <0.00696 R34= 0.09667 R35= 6.060000
J= 8 *YMAX= 0.0737 SIGYMAX= 0.0218 R33= -0.235233 R34= 0.03259 R35= 0.000600
J= 9 -YMAX= 6.0519 SIGYMAX= ©.0108 R33= -0.42588 R34= ~-0.01233 R35= 0.000600
J= 10 - YMAXS 0.0682 SIGYMAX= 0.6218 R33= ~0.13733 R34= 0.06234 R35= 0.00000
J= 11 -YMAX= 0.06819 SIGYMAX= 0.0131 R33= <0.67327 R34= 0.07591 R35= 0.00000
J= 12 “YMAX= ©0.1336 SIGYMAX= 0.6218 R33= -0.20573 R34= 0.15107 R35= 0.00000
J= 13 -YMAX= 6.0600 SIGYMAX= 0.0300 R33= 1.00000 R34= 0.13400 R35= 0.00000
T INSTRUMENTAL WEIGHTING ~+ WEIGHT =! 1L/SIGMAY 2
J= 1 A= 621987 SIGMAAZ ,065553" FVALU= '0.0000E+060 CHISQR=:
J= 2 A= -J129178 SIGMAAZE .025195!¢ FVALU= [0.3803E+01 CHISQR=:
J= 3 (A= 1876417 SIGMAAs .112428!: FVALU= 0.2552E+03 CHISQR=.
. COVARIANCE MATRIX
8IG(1,1)= 3:083530E-05
SIG(2,1)=-1,108825E-04 SIG(2,2)¥= 6.337715E-04
ooSIG(3,1)= 3.409873E-04 SIG(3,2)=-2.577216E-03/" SIG(3,3)¢ 1.264001E-02

ALPHA= 2.60918] STD. DEVIATION = 11.47192
BETA= ' 0.44410 . STD! DEVIATION = @, 19929

EPSILON= 104951003 . STD) DEVIATION = 02453404
BEAM FIT CHISQR: = .0, 147448E-63 - : '
¢ .7y = SQUARE OF WIDTHLOR WIDTH FIT OR STD. DEV:

= | WIDTH® ©.29480. ( .08691)WIDTH FITs 0.27687.(
= 2 WIDTH= 0.25110" ( .06305)WIDTH FIT= 0.25605(
= § WIDTH: 0.199207 ( .03968)WIDTH FIT= 0.21474(
= 4 WIDTH= ©.19380: ( ,08756)WIDTH FIT= 0.19457(
= 5 WIDTHs ©.16370" ( .02680)WIDTH FITz 0.156347(
= & WIDTH: 0.18650. ( .01863)WIDTH FITs 0.121331(
= 7 WIDTH= 0.08738° ( .00764)WIDTH FIT: 0.99659"(
= 8 WIDTH: 0.07368 ( .00543)WIDTH FIT= .0.066707(
= 9 WIDTH= 0.65186" ( .00269)WIDTH FIT= 0.05257"(
=10 WIDTH= 0.06823° ( .00466)WIDTH FIT= 0.07752(
=11 WIDTH= ©.08188: ( .60670YWIDTH FIT: . 0.08386" ¢
=12 WIDTH: 0.18360: ¢ .01785)WIDTH FITz 0.11299(
=18 WIDTH= ©.06000". ( .00360)WIDTH FIT= 0.05474°(

YubLLLLLL LGy

Figure 5a.

.07666) STD. ‘DEVIATION=
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Appendix A -- The LSQFIT Subroutine

A. The LSQFIT subroutine will do a least square fit to linear equations with

constant coefficients:
Y = a;X;(2) + apXy(z) + a3zx3(z) + ... (A1)

where: 2z —-— independent variable
Xy(2z) -- X,(z) -- known functions of the independent variable z but in-
dependent of the coefficients a;
a; == a, -- constant coefficients to be found

Y —— dependent variable

This routine is a modification of the LEGFIT routine in Bevington.

Other linear least square fitting subroutines are available but one should
use caution with them. Some routines will solve for the coefficients plus a dc
or average term. This type of fitting routine cannot be used for emittance
analysis.

Some equations that satisfy this criteria are:

1. ¥ =aX+ a2X2 + a3X3 (A2)
2. Y= ajX + apX3 + agxd (43)
3. Y = ajcost + apcos2t + agcos3t +... (A4)

Some equations that do not satisfy this criteria are:
1. Y= 2%+ azxaz + a3xa1
2. Y = ajln(agX) + a3Xa4

Some equations that do not satisfy this criteria but can be modified to

meet the criteria are:



g /x=A2 2 . ]
(A3 ) the Gaussian Function

A
1. 6(%) = L.
VZTI'A32
. .
2. XMAX = (allRllZ + agy(2Ry1Ry2) + a22R122>/i The Transport Equation

The Gaussian function can be modified to a linear equation by taking the

natural log of both sides
Y= a + apX + a3X2 (45)

where: Y = 0n G(x)

a = gn A\ _ 47 (46)
1 (/211A32 2432
)
a = r—
2 Ag2
a =__-1_

The Transport equation can be modified by squaring.

Y = a1X1(2) + ayXy(z) + agX3(z) (AD)
where: Y = (XMAX)2 (A7)
X1 (2) ='R112
X9(z) = 2R131Ry9
X3(z) = R122



B. Calling the LSQFIT Routine

To use the LSQFIT subroutine, one calls:

CALL LSQFIT (X,

CHISQR).

SIGMAY

NPTS

IHV

MODE

Y, SIGMAY, NPTS, NUMT, IHV, MODE, YFIT, A, SIGMAA, FVALU,

Description of Input Parameters

array of the independent variable

array of data points for the dependent variable in the same
order as X. Y is the measured value for a given value of X for
standard equations or Y is a modification of the measured values
for modified equations.

array of standard deviations of the Y data in the same order as
Y. For modified equations the SIGMAY is a modification of the
standard deviations of the measured points.

number of pairs of data points, maximum = 40,

number of terms in the function or number of coefficients; maxi-
mum = 10.

a variable that may or may not be used. For Transport calcula-
tions it identifies horizontal or vertical plane.

determines the mode of weighting the Y points when doing the
least—-squares fit.

+1 (instrumental) WEIGHT(I) = 1/SIGMAY(I)*%2

¢ (no weighting) WEIGHT(I) + 1.0 |

-1 (STATISTICAL) WEIGHT(I) = 1/Y(I)

+2 (no weighting for modified equations)

For standard equations modes -1, ¢, and +1 are valid. For modes -1 and +1

the data points are weighted and the coefficients A are found. The standard de-

viations SIGMAA are proportional to the weighting of the Y points. Thus, if

mode +1 is used and the analysis is repeated for the same values of the data

points but with smaller values of SIGMAY, the same coefficients will be found
but with smaller values of SIGMAA. For mode ¢ SIGMAA is proportional to CHISQR

or to the fit of the data to the equation.
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For modified equations only modes +2 and +l1 are valid. For mode +1 SIGMAA
is proportional to SIGMAY as for standard equations. For no weighting for
modified equations, mode +2 is used. However, when mode +2 is used, the stan—
dard”deviations of the measured points must all be made equal and then SIGMAA

will depend on CHISQR or to the fit of the data to the equation.
Description of Output Parameters

YFIT -— array of calculated values of Y.
A -- array of standard coefficients in Equation Al.
SIGMAA ~— array of standard deviations for the coefficients.
CHISQR -- reduced CHI-SQUARE for the fit times the weighting.

(WEIGHT * CHI SQUARE).
(NPTS-NTERMS)

CHISQR =

This is approximately the average weighted CHI SQUARE for a data

. point.
FVALU -- array of FVALUES for each term
_ ACHI SQUARE
FVALU(I) = =y R

FVALU is a measure of the effectiveness of each term to the fit-
ting. If FVALU(J) is negative or zero, that term should not be
included. FVALU for the first term +is always zero. A term
should be added only if it reduces CHISQR or makes the fitting

better.

An additional function program needs to be added to the program calling
LSQFIT. This function routine calculates the Xi(Z) value for each term and is
different for each equation Al-A5,

It is written as:
Function FCIN (X, I, J, IHV)

X -- the value of X for a data point (may not be used).
I -— index of data points.
J -— index of the term of the functiom.

IHV ~- a variable that can be used.
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For Equation A2

_ 2 3
Y = a1X + aZX + a3X

Function FCIN (X, I, J, IHV)

FCIN =—- X#*%*J
RETURN
END

Another function program is sometimes needed'to calculate standard
deviations. This program is always needed for modified equations. The LSQFIT
subroutine will return the standard deviations of the A coefficients. However,
for modified equations, other values are calculated from these A coefficients
and one needs to know the standard deviation of these values. For example, the
Twiss parameters are calculated from the 0 parameters which are found by LSQFIT.

This function program evaluates Equation 19. 1If:

A)

W= £(A, Ay, A,

and Al, A2’ and A3 are the coefficients returned by LSQFIT, then the vari-

ance of W or the square of the standard deviation of W is:

(szen® = (szea?@E ) + (s1eay)?@E ) + (sch3>2<3f

+ 2(sTcA A, )z(af yEE ) + 2(SIGA,A >2(3f Y@L )

2(STGA,A,) ( )( ‘ (A8)

The unknowns of this equation are the partial derivatives —-- 3£/0A,
Bf/BAZ, and 3f/3A3. As discussed in Part 6 the variances and covariances of the

A coefficients are available from the LSQFIT subroutine through the:



COMMON/LSQ/NTERMS, SIGUV2
statement. The function program is:

Function STDEV (DERIV)

Description of Input Parameters.
DERIV -- array of derivatives, Bf/BAl, 8f/3A2, 3f/8A3. The array must be in the

order of the A coefficients. Thus:

DERIV(1l) = af/aA1
DERIV(2) = af/aA2
DERIV(3) = 3f/3A3

Use of the function
SIG = STDEV(DERIV)
If W= f(Al, Ay, A3) then SIG is the standard deviation of W. The values
of DERIV are calculated in TEST3-5..
A load command that can be used is:

Load TEST1.F4, REL: REGRE/LIB

C. Sample Programs

1. TESTL

The TEST1.F4 program trys to fit the X and Y data to the equation:

= 2 3
Y = alx + aZX + a3X

The Y data was calculated from:

Y = 2% + 3%% + 4%°
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The MODE used is zero or no weighting is used. The standard devia-
tions of the coefficients will depend on the fitting. The results shown in Fig-
ure 1 show that the 3 coefficients are found accurately'and the CHISQR is very
small. For each term, except the first, the FVALU is positive and large ‘
indicating that all terms in the equation are needed to fit the data. The re-

sults are:

a, = 2.000, STD. DEV. = 0.0010
a, = 3.000, STD. DEV. = 0,0006
a, = 4,000, STD. DEV. = 0.0001

These compare with the exact values of 2.0, 3.0, and 4.0.

2. TEST2

The TEST2.F4 program trys to fit the same data as TEST1 to:

Y = alx + aZXZ + a3X3 + a4X4
by changing NUMT to 4.

The results shown in Figure A2 show that the CHISQR is less and that
the coefficients are not known as precise as TESTl. The FVALU for the 4th term
is negative indicating that that term shoﬁld be omitted since the fitting became
worse when it was added. For better accuracy one should repeat TEST2 but with

NUMT equal to 3. The results are:

a, = 2.000, STD. DEV. = 0.0333
a, = 2.990, STD. DEV. = 0.0349
a, = 4.000, STD. DEV. = 0.0114
a, = 0.00 , STD. DEV. = 0.0012

3. TEST3

The TEST3.F4 program will fit profile data to the best fitting
Gaussian function. As discussed earlier Equation A9 is the Gaussian function

equation and cannot be used directly with LSQFIT.
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e x—Anr2
olx) = —2L 6<X Ay (A9)

V2mAq2 43
where:
Aj; -- area under the Gaussian function.
Ay -- the mean of the functiom.
A3 -- the sigma or width or standard deviation of the functionm.
Taking the natural log of G(x) and rearranging:
A A2 A -
InG(x) = |l - =25 |+ 2K + (i) &
v2mA32 243 A3 243
or
Y=a +aX+ 33X2 (45)

where a;, aj, and a3 are functions of Ay, Ay, A3 but are independent of X.
This is the modified equation that can be solved with LSQFIT. 1If aj, ajy, and

a3 are found:

- (ol s
by = G5
- (2 (A10)
A, (555)
a2
A = /2nA32 e\3l * 2432

The LSQFIT routine can be used to find aj, ay, and a3y if the Y meas-

ured points and their standard deviations are modified for LSQFIT;

<
I

n(measured Y points)
(A11)
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From Equation 19 the standard deviation of the Y points can be calculated from

the standard deviations of the Y measured points:

af
9 (YMEAS)

(SIGMAY)2 (SIGYMEAS)2<

(A12)

(=2 —
- 'YMEAS

il

)2 (SIGYMEAS)2

or

1

SIGMAY = YMEAS

(SIGYMEASURED)

Y, X, and SIGMAY are used as input to LSQFIT.

The LSQFIT routine returns the fitted values of aj, aj, and a3. The
constants Ay, Aj, and A3 of the Gaussian can be calculated from these using Equa-
tion (Al0). The routine also returns the standard deviations of ai, as, and aj.

To find the standard deviations of the Gaussian constants, the function

STDEV(DERIV) is used. The partial derivatives are needed:

For A, — the sigma width = f(a;, a,, a,)

DERIV(1) = ¢ = 3A,/da,;
DERIV(2) = ¢ = aA3/aa2 (A13)
- =3/27_
DERIV(3) = (—2a3) = 3A3/3a3
For A, -- the mean value = f(al,'az, as)
DERIV(1) = ¢ = 8A,/3a,;
DERIV(2) = -1/2a, = 8A2/8a2 (Al4)
DERIV(3) = a2/2a3 = 3A2/333
For A, —- the area = f(al, 2y, a3)
DERIV(1) = A1 = 3f/3a1
DERIV(2) = (—a2/2a3)A1 = 3f/3a2 (A15)
2
DERIV(3) = Al(AZ - 1/2a3) = 8f/8a3
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The TEST3.F4 program of Figure 3 illustrates using LSQFIT to find the
constants in Equation (A9). The data was calculated from a Gaussian with a mag-
nitude (Al) of 1253.3, mean (A9) of +2.0, and sigma (A3) of 5.0 and rounded to
the neareét integer. The X data varied from -10 to +10. The standard deviation
of all the measured points was 0.5 and the mode was +1. Therefore, the standard
deviations found are proportional to these measured standard deviations. The

function FCTN for Equation A5 is different from TESTI:

Function FCTN (X, I, J, JHV)
FCIN = X**(J-1)

RETURN

END

The CHISQR that is returned from LSQFIT is for Equation A5 and not for
the Gaussian fit. The reduced CHI SQUARE for the Gaussian function is

calculated from:

. NPTS
CHI SQUARE = I~ (calculated Gaussian Y-yMEAS) 2 (A16)
_ CHI SQUARE (A17)

CHISQR = NpTs-NoMT

To illustrate the error matrix or covariance matrix, the
COMMON/LSQ/NTERMS, SIGUV2

statement was added to TEST3.F4. This is not needed to calculate the standard
deviations. Since the covariance matrix is symmetrical, only the lower half is
printed. One can determine the effect of correlation between the A coefficients
returned by LSQFIT by comparing the off diagonal elements of the matrix with the
diagonal elements. If the off diagonal elements are zero, no correlation exists
between any of the A coefficients.

The results of TEST3.F4 are:
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Al = grea = 1260.04 ; STD. DEV. = 0.56
A2 = mean = 2.000; STD. DEV. = 0.0025
A3 = gigma = 5.028; STD. DEV. = 0.0027

These compare favorably with the exact values of 1253.3, 2.0, and 5.0.
4. TEST4

The TEST4.F4 program is used to solve the horizontal simplified TRANS-
PORT Equation, lla. For the SBE (Single Bunch Extraction) to the "D" line, the
fractional momentum deviation for a 99% beam is assumed known (§ = *0.12%).

From Equation 4,

L2

Rearranging Equation lla:

2 2
+ 2021R R

xuax = (o 11812 * 99989

11t
(A18)
2\%
* Og55Ry5”)
As discussed earlier this is not suitable for solution with LSQFIT but it can be

modified:

2 - 2 4 20, .R..R

2
(XMAX)® - 055R) 5" = 0y Ry 21%11%12

(A19)
2

¥ T99R1n

This equation is a linear equation of type (Al) and LSQFIT may be used to solve

for the coefficients Oy19 9975 and Oy9e
Y = a;X,(2) + a,X,(z) + a;X3(2) (A1)
where a;s 39, and aq are 0,45 G519 and Oy and the wvalues to input to LSQFIT

are:
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Y = (XMAX measured)? - 055R152
X = beas line distance

%(z) = Ryp?

X5(2) = 2Rj1Ry9

X3(z) 2

[

]

Rz

and from Equation 24
SIGMAY = 2( XMAX measured) (SIGXMAX measured)

If X is given as a beam line distance, the (R) matrix elements can be
calculated from a TRANSPORT or QTUNE type program. This would make the
necessary FCTIN routine complicated. The simpler means is to find the [R]
matrices with TRANSPORT or QTUNE and enter them as data into FCTN through a com-

mon statement. Thus:

Function FCIN(X, I, J, JHV)
COMMON/MATR/R(5, 5, 30)

IF(J. EQ. 1) FCT = R(1, 1, I)**2

IF(J. EQ. 2) FCT = 2*R(1, 1, I)*R(1l, 2, I)
IF(J. EQ. 3) FCT = R(1, 2, I)**2

FCTN = FCT

RETURN

For this example, X is not used in the FCTN routine. To find the horizontal
emittance parameters of equation lla only the Rjj, Ryy, and Ryj5 elements of the
transport matrices are needed. The R array must be filled in the same order as
the Y array - i.e. R(1, 1, 1) must be the Rj; component of R for the first data
. point corresponding to (XMAX measured) and Ry5 for the same data point.

The matrix elements for the sample program TEST4.F4 were calculated
with QTUNE for elements in the "D" line from F13 up to AD2 at 24.06 GeV/c for a
typical running condition. For this area of the '"D" line no skew elements are
present and Equation lla describes the transport system. The horizontal sizes
used were calculated assuming o, B, € = -0.938, 0.1904 kiloinch and 0.075525
inch-mrad for a 99% beam. The calculated sizes were rounded to 3 places and the

standard deviation for all these points was assumed to be 0.0005.
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From the values of 0y7, 091, Opp returned by LSQFIT and Equation 5,

the fitted Twiss parameters o, 8, and € can be found

_ / 2
€ = v0

1192791
a = -0,,/¢ (5)
B = cll/s

It should be pointed out that LSQFIT will find the constants for the
modified equation Al9 and not Equation 5. This results in sometimes finding
that €2 is negative or € is not real. It has been found that if the measured
XMAX sizes are on both sides of a waist or that sufficient widely spaced points
on the X/0 plane ellipse are used, that a real emittance may be found.

LSQFIT will return the values of 0y;, Op;, and Up9 and their standard
deviations.' Using Equations 5 and 19, the standard deviation of the Twiss param-
eters can be found using the function STDEV. '

To use the function STDEV, the partial derivatives are needed.
For ¢ —— the emittance = f(oll, Oy 022)
DERIV(1)

DERIV(2)
DERIV(3)

022/22 = af/ac11
-021/3 = af/3021 (A20)
011/28 = 8f/8022

For alpha = f(o )

117 9217 T2

- 3 _
DERIV(1l) = 022021/28 —zaféaoll
DERIV(2) = (-1/g) ~- 951 /e = af/ac21 (a21)
- 37_
DERIV(3) = 011021/2e af/ac22
For beta = f(g )

11?7 %17 %22

- _ 3 .
DERIV(1) = (1/¢e) 011022/23 af/ao11
DERIV(2) = °11°§1/€3 = 3f/8021 (A22)
DERIV(3) = -011 /2" = af/acz2
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0f equal concern is the standard deviation of the fitted calculated

XMAX points. Rearranging Equation 1lA:

_ 2 2.5
XMAXFIT = (0., (R;,7) + 0, (2R, R,,) + 0, 5(Rpy %) « Og5(R;5)7)

or

XMAXFIT = f(g ) (A23)

11? 9217 9220 55
This is also the equation that is used to find the beam size anywhere
in a beam line knowing the R matrix elements. To find the standard deviation of

XMAXFIT, the derivatives are needed for the function STDEV.

DERIV(1) (R )/Z(XMAXFIT) ;3f/aor11

11
DERIV(2) = (2R11 12)/2(XMAXFIT) = af/3021
(A24)
DERIV(3) = (Rlz) /2(XMAXFIT) af/3022
DERIV(4) = (R ) /ZCXMAXFIT) af/aor55

Since the fractional momentum deviation § or 055 Was assumed constant
for this example, the variances and covariances for this term are zero. Only
three derivatives are needed -~ DERIV(1l) - DERIV(3). 1If one was trying to find
the value of § for the beam from many properly chosen beam width measurements,
then the standard deviation of the calculated beam size would depend on all four
derivatives. The standard deviations of the Twiss parameters would not depend
on this fourth derivative.

As shown in TEST4.F4, these derivatives can be more easily expressed
using the FCTN function.

The results shown in Figure 4 show that for this ideal case, the Twiss
parameters are found accurately. The reduced CHI SQUARE for the fitting, cal-
culated from an equation similar to Equations Al5 and Al6, is small (1 x 10-7).

For this example all beam width points were assumed known to the same accuracy

and mode +1 was used. The results are:

Alpha = -0.9348 , STD. DEV. = 0.0042
Beta = 0.1902 , STD. DEV. = 0.00059 kilo inch
Epsilon = 0.07556, STD. DEV. = 0.00037 in-mrad
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5. TESTS5

This example is similar to TEST4 -except that both the horizontal and
vertical emittance parameters are found.

The simplified TRANSPORT equations (lla) and (11lb) are used. No skew
components are allowed in the beam line. The data is from the "D" line from F13
up to AD2. The fractional momentum deviation for a 997 beam is assumed known
(8§ = 0.12%). '

Rearranging (1la) and (11b), the modified equations for LSQFIT are:

2 - 240, R R+ (11a)

2
(XMAX)™ = 05R 5" = 0 )Ry, 21811812 * 920R1

2 _ 2 _ 2 | (11b)
(PMAX)™ = 055Ry5" = O33Ry3" + 20,3RqqRq, | 04k,
Each equation is solved independently with LSQFIT. Using the IHV pa-
rameter to separate horizontal and vertical planes, only one FCTN routine is

used.

Function FCTN (X, I, J, JHV)
¢ JHV =1 for horizontal, JHV = 3 for vertical

COMMON/MATR/R(5, 5, 30)
IHV = JHV

FCT = ¢
IF(J.EQ.1l) FCT
IF(J.EQ.2) FCT
IF(J.EQ.3) FCT
FCIN = FCT
RETURN

END

R(IHV, IHV, I)**%2
2.*R(IHV, IHV, I)*R(IHV, IHV+1, I)
R(IHV, IHV+1, I)%**2

I

The assumed values of the Twiss parameters were:

Horizontal a, B, € = -0.9380, 0.1904 KILOINCH, 0.075525 IN-MRAD
Vertical o, 8, € = 0.9870, 0.1457, 0.075525
Momentum - 24.06 GeV/e, § = 0.12%
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The same horizontal data was used in TEST5 as in TEST4 except that the
assumed standard deviations of the horizontal widths in TEST5 was 20 times
larger than for TEST4. As a result the mode +1 standard deviations are larger
fér TEST5 but the unweighted mode +2 standard deviations are the same.

The results are:

Mode +1 STD. DEV. Mode +2 STD. DEV.
Alpha = -0.9348 , 0.0842 -0.9348 , 0.0027
Beta - = 0.1902 , 0.0119 0.1902 , 0.00038 kilo inch
Epsilon = 0.07556, 0.0075 0.07556, 0.00024 in-mrad

The results for the vertical plane are:

Alpha = 0.9851 , 0.130 0.9851 , 0.0039
Beta = 0.1455 , 0.008 0.1455 , 0.0003
Epsilon = 0.07548, 0.0045 0.07548, 0.0001

One should note that the magnitudes of the Twiss parameters are the
same for each mode because all weights were assumed equal for Mode 1. If each
point was weighted differently, the parameters would have different values for
each mode.

The CHISQR returned by LSQFIT is modified by the weighting used as
shown in this example. The important CHISQR is the value obtained with the fit-
ted parameters.

TEST5.F4 is the program that can be used to determine horizontal and
vertical emittances if no skew elements are in the beam line. XMAX and YMAX are
the measured beam sizes with SIGXMA and SIGYMA their standard deviations. The
(R) matrix elements RMIl to -RM35 are determined with TRANSPORT or QTUNE. It is
recommended that the initial values calculated with these programs be inserted
into XMAX and YMAX. TEST5 can be run and the Twiss parameters obtained can then
be compared with the assumed values in TRANSPORT or QTUNE. This checks that the
correct (R) matrices are used. The experimental values of XMAX and YMAX with
their standard deviations can then be inserted.

The data for TEST5 was obtained at 12 different points in the beam
line. If a quad is varied, similar data could be obtained -for each tune and

inserted into XMAX, YMAX and the (R) elements.
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6. TEST6

Another possibility involves solving a beam line with skew components.
At the AGS the "A" and "D" lines beyond AD2&3 have skew quads. Equation (10a)
and (10b) are the Transport equations with skew elements in the beam line but
without skew components in the input beam. The input fractional momentum devi-

ation for a 997 beam is assumed known.

2 2 2 2
(XMAX)™ = OggRyg™ = 01 Ryy" + 20,,R) Ry + 090k,
(10a)
+ O0,..R 2+20' R..R +0,,R 2
33813 £3R13R14 * T4sRis
2 2 2 2
(YMAX)™ = OgRyg™ = 0) Ryy " + 20,;RypRy) + TyoRg,
(10b)
+UR2+20RR +OR2
33833 43834833 * T44R3y

These equations are linear equations with six constant coefficients.
It has not been found possible to use LSQFIT to solve for the six coefficients
using ideal calculated values of XMAX and YMAX. The FVALU term becomes negative
for the sixth term indicating that CHISQR increases when a sixth coefficient is
added. The fault may be that the double precision accuracy is not sufficient on
this PDP10 computer. Mathematically it should be possible to solve (10a) or
(10b) or solve the sum of (10a) and (10b) for the coefficients.

It is possible to find five constants to satisfy (10a) or (10b) but to
find the Twiss parameters in each plane requires six parameters. One can find
a good fit (CHISQ < 10—5) to (10a) or (10b) if one disregards the term of the
other plane: 1i.e

A larger beam that is not tilted will fit the data of the beam line
with skew components.

The result is that the horizontal and vertical Twiss parameters of
the beam cannot be found from horizontal and vertical beam size measurements

in a line downstream of skew components if the LSQFIT routine is used.
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K4/
60

75

pskkskdekkergkgcrkrpkrg TESTL Fd kkepkiioprsokiockirkinrikrionriikrs :
SOLVES:
Y = 2.0%X + 3.0 % X2 + 4.0% X8

st

DIMENSION X(10),Y(10),SIGMAY(10),YFIT(10),A(10),
1 SIGMAA(10),FVALU(10)

DATA X/0.5,1.0,1.5,2.,2.5,3.,3.5,4.0,4.5,5.6/

DATA Y/2.25,9.06,23.25,48.0,86.25,141.90,215.25,312.0,434.23,
1 585.0/

DATA NPTS,IOUT,MODE, IHV

17 190, 1, 9, e/

NUMT = 3

DO 40 K=1,NPTS
FVALU(KX) = 0.

CALL LSQFIT(X,Y,SIGMAY,NPTS,NUMT, IHV,MODE,YFIT,
1 A,SIGMAA,FVALU,CHISQR)

DO 56 J=1,NUMT
WRITE(IOUT,35)J,A(J),SIGMAA(T) ,FVALU(J) ,CHISQR
FORMAT(3X,°J= *,I2,2X,’A= ’,F8.4,2X,> SIGMAA= * ,F8.4,’ FVAL
1 E12.4,2%,’CHISOR= ’ ,E15.6)

WRITE (IOUT,75)

DO V0 J = 1,NPTS

ERROR = 106. *( YFIT(J) ~Y(J))/Y({J)
WRITE(IOUT,60)J,X(J),Y(J),SIGMAY(J) ,YFIT(J) ,ERROR
FORMAT(3X,’#= *,12,1X,'X=",F8.3,’ Y=',F8.3,’ SIGMAY=’,
1 ¥8.8,’ YFIT=',F8.3,2X,* ERROR %= °’ ,F8.4)

FORMAT (1X,/)
END

FUNCTION FCTNC X,I,J,JHV)
DOUBLE PRECISION XX,F2

= !

XX = X

F2 B XXkRJ

FCTN = F2

BETURN

END

1 A= 2.0000 SIGMAA= 0.8010 FVALU= 0 .0000E+08 CHISQ==
2 A= 3.00060 SIGMAA= 0.90606 FVALU= 0.3538E+03 CHIS%A=
3 A= 4.0000 SIGMAA= 0.0001 FVALU= 0.2046E+10 CHISuR=

X= 8.500 Y= 2.250 SIGMAY= 9.000 YFIT= 2.250
X= 1.000 Y= 9.000 SIGMAY= 0.000 YFIT= 92.0600
X= 1.500 Y= 23.250 SIGMAY= 0.000 YFIT= 23.250
X= 2.000 Y= 48.000 SICMAY= 90.000 YFIT= 48.000
X= 2.500 Y= 86.256 SIGMAY= 9.000 YFIT= 86.250
X= 3.000 Y= 141.000 SIGMAY= 0.000 YFIT= 141.600
X= 3.500 Y= 215.250 SIGMAY= 0.000 YFIT= 215.249
X= 4.000 Y= 312.000 SIGMAY= 9.6000 YFIT= 311.999
X= 4.500 Y= 434.250 SIGMAY= 0.000 YFIT= 434.249
X= 5.000 Y= 585.000 SIGMAY= 0.600 YFIT= 584.998

SO ON-

Figure Al: TEST1
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Rk sekrtorkek TEST2 , F4A  ekkskriookiori ko okgeopkackiekeg
SAME AS TEST1.F4 BUT TRYS TO FIT DATA TO:
Y = AI¥X + A2% X2 + A3% X3 + Adk X4

(oo Rwlw;

DIMENSION X(10),Y(10),SIGMAY(10),YFIT(10),A(10),
1 SIGMAA(10),FVALU(10)

Y
DATA X/6.5,1.0,1.5,2.,2.5,3.,3.5,4.0,4.5,5.0~/
DATA Y/2.25,92.0,23.25,48.0,86.25,141.0,215.25,312.0,434.23,
1 585.9/
DATA NPTS,10UT,MODE, IHV
it/ 160, 1, a9, i
C
10 NUMT = 4
Cc
DO 48 K=1,NPTS
49 FVALU(K) = 0.
C
CALL LSQFIT(X,Y,SIGMAY,NPTSNUMT, IHV,MODE,YFIT,
1 A,SIGMAA,FVALU,CHISQR)
c
DO 50 J=1,NUMT
50 WRITE(IOUT,55)J,A(J),SICMAA(J) ,FVALU(J) ,CHISOR
55 FORMAT(8X,'J= ' ,12,2X,’A= * ,FB8.4,2X, SIGMAA= ’ ,F8.4,’ FVALU=
1 E12.4,2X,’CHIS@R= * ,E15.6)
WRITE (I0UT,75)
C
Do 70 J = 1,NPTS
ERROR = 106, ®( YFIT(J) -Y(J))/Y(J)
7o WRITE(IOUT,60)J,X(J},Y(J),SIGMAY(J) ,YFIT(J),ERROR
60 FORMAT(8X,'#= ' ,12,1X,"X=",F8.8,° Y=',F8.3,> SIGMAY=’,
1 F8.3,’ YFIT=’,F8.3,2X,’ ERROR %= ’ ,F8.4)
Cc
75 FORMAT (1X,”)

END

FUNCTION FCTN( X,1,J,JBV)
DOUBLE PRECISION XX,F2

XX = X
F2 = XXxkpJ
FCTN = F2
RETURN
END
J= 1 A= 2.0000 SIGMAA= 0.,0333 FVALU= 0.0000E+00 CHISR=
= 2 A= 2.9990 SIGMAA= 9.0349 FVALU= 0.3538E+03 CHIS«H=
= 3 = 4.0000 SIGMAA= 0.0114 FVALU= 0.2046E+10 CHIS=R=
= 4 = 0.0000 SIGMAA= 6.0012 FVALU= -0.5971E+01 CHISuE=
#= ] X= 0.500 Y= 2.250 SIGMAY= 0.000 YFIT= 2.250 ERGOR
#= 2 X= 1.000 Y= 9.000 SIGMAY= 0.000 YFIT= 8.999 ERZOR
#= 3 X= 1.500 Y= 23.250 SIGMAY= 0.000 YFIT= 23.248 ERIOR
#= 4 K= 2.000 Y= 48.000 SIGMAY= 0.000 YFIT= 47.996 ERWOR
#= § X= 2.500 Y= 86.250 SIGMAY= 0.0600 YFIT= 86.244 EROR
#2z 6 X= 3.000 Y= 141.000 SIGMAY= 0.000 YFIT= 140.991 ER#0OR
#= 7 ¥= 3.500 Y= 215.250 SIGMAY= 0.000 YFIT= 215.238 ER:R
#=  § X= 4.900 Y= 312.000 SIGMAY= 0.000 YFIT= 311.984 ERIOR
#= 9 X= 4,500 Y= 434.250 SIGMAY= 0.009 YFIT= 434.230 ER:OR
o

#*
n
-

X= 5.000 Y= 585.000 SIGMAY= 0.000 YFIT= 584.976 ERZOR

Figure A2. TEST2
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C srkikkickkikekkiikkiikiky TESTS . F4 kkkbssorickkaiiikrkkimidkikikig o
€ TFITS DATA TO THE BEST GAUSSIAN USING:
C Y = A6 + Al%X + A2% X2
C
DIMENSION X(21),Y(21),SIGMAY(21),YFIT(21},A(10),8IGMAA(10),
1 FVALU(10),YMEAS(21),GASFIT(21),AGAS(3),SIGAGA(3),SIGMEA(21),
2 SIGFIT(21)
DIMENSION SIGUV2(10,10) ,DERIV(3)
COIMMON/LSQ/NTERMS , SIGUV2

c
DATA X/-10.,-9.,-8.,-7.,-6.,~5.,~4.,-8.,-2.,-1.,0.,1.,
12.,8.,4.,5.,6.,7.,8.,9.,10./
DATA YMEAS/6.,9.,14.,20.,28.,38.,49.,61.,73.,84.,92.,98.,100.,
1 98.,92.,84.,78.,61.,49.,38.,28./
DATA BLK,NPTS, I0UT,MODE, IHV,SIGNEA
1, ", 21, 1, 1, o, 21%0.1/
c
10 NUMT = 3
c
DO 30 K=1,NPTS
SIGHAY(K) = SIGMEA(K)
IF (YHEAS(K) .NE. 0.)SIGMAY(K) = SIGNAY(K)/YMEAS(K)
26 Y(K) = ALGG( YMEAS(K) )
c
CALL LS@FIT(X,Y,SIGMAY,NPTS,NUNT, IHV,MODE,YFIT,
1 A,SIGHAA,FVALU,CHISGR)
c
v DO 50 J=1,NUNT
50 WVRITE(10UT,70)J,A(J) ,SICMAA(J) ,FVALU(J) ,CHISOR
0 FORMAT (3X,’J= ',12,2K,’A= ’,F8.4,2X, SICMAA= *,F8.4,° FVALU= °,
1 E12.4,2X,’ CHISQR= ’ ,E15.6)
WRITE (I0UT,?75)
75 FORMAT (10X, * COVARIANCE MATRIX®,/)
DO 80 I1=1,NUNT
80 WRITE(I0OUT,85) (BLK,1,J,8160V2(I,J),J=1,1)
85 FORMAT (2X,9(Al1,’SIGC’ ,11,°,”,11,%)=",1PE13.6,1X) )
C
€ TIND GAUSSIAN PARAMETERS
99 AGAS(3) = SQRT( -0.5/A(3) )
AGAS(2) = -0.5%A(2)/A(3)

XPI2 = 6.283185
XEXP = A(1) + 0.5%k( AGAS(2)~7 AGAS(3) )*%2
CONST = SQRT( XPI2 % AGAS(3)%%2)
AGAS(1) = CONST# EXP(XEXP)
C STD DEV OF AGAS(3), AGAS(2), AGAS(1)

DERIV(1) = 0,

DERIV(2) = 6.

BERIV(3) = (~2.03A(3) »kk-1.8

SIGAGA(3) = STDEV(DERIV)

BDERIV(1) = @,

DERIV(2) = -6.57A(3)

DERIV(3) = 0.5kA(2)/4(3)%%2

STGAGA(2) = STDEV(DERIV)

DERIV(1) = AGAS(1)

DERIV(2) = -0.5#A(2)*ACAS(1)/A(3)

DERIV(8) = ACGAS(1)¥(AGAS(2)#%2 — 0.574(3) )
a BIGAGA(1) = STDEV(BERIV)
C TFIND CHISQGR FOR GAUSSIAN & STD DEV FOR FITTED VALUES.
158 CONST = ACGAS(1)/8@RT( XPI2# ACGAS(3)xk2)

Figure A3a. TEST3.F4 A Gaussian Fit
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GCHISQ = 9,

DO 176 J=1,NPTS

GEXP = ( X(J) - AGAS(2) )/ AGAS(3)
GEXP = —~O,5hGERP##2

GASFIT(J) = CONST * EXP(GEXP)
DERIV(1) = GASFITWJ)

DERIV(2) = X(J)GASFITWI)

DERIV(3) = GASFIT(J)Ix( K(J)*k*k2)
SIGFIT(J) = STDEV(DERIV)

GCHISQ = GCHIS® + (GASFIT(J) — YMEAS(J) )%*2
NFREE = NPTS ~ NUMT

GCHISR = GCHISQ/FLOAT(NFREE)

Do 1996 J=1,3

WRITE(IOUT,210)J,AGAS(J) ,SIGAGA(J) ,GCHISR

FORMAT(3X,*J= *,12,2¥,’GAUSSIAN A =’ ,F9.3,2X,’STD DEV.= *,F9.6,
1 2¥X,’ GAUSSIAN FIT CHISQR= °* ,E15.6)

Do 236 J = 1,NPTS,2

ERROR = 1896, #( GASFIT(J) —-YMEAS(J))/YMEAS(J)
VRITE(IOUT,250)J,%(J) ,YMEAS(J) ,GASFIT(J) ,SIGFIT(J) ,ERROR
FORMAT(3X,> #= *,{2,1X,’X=",F8.3," YMEAS=',F8.3,' GAUSSIAN FIT=",
1 ¥8.3,2¥%,’STD. DEV, OF FIT=’,F7.4,2X,’ ERROR %= ’,F8.4)

END

FUNCTION FCTN( X,1,J,JHV)
DOUBLE PRECISION XX,F2

XK = X

F2 = ke (J-1)

FCTN = F2

BRETURN

END
J= 1 A= 4.5258 SIGHMAA= 0.0004 FVALU= 0.0000E+00 CHISAGR= 0.406618E+01
J= 2 A= 0.6791 SIGMAA= 9.0601 FVALU= 6.2714E+60 CHISAQR= 0.406618E+01
J= 3 A= -0.0198 SIGMAA= 0.0960 FVALU= 0.2121E+06 CHISOR= 0.4%6018E+01

COVARIANCE MATRIX

81G(1,1)= 1.847967YE~-07
81G(2,1)=-4.242133E-09 SIG(2,2)= 1.491277E-08
816(3,1)=-4.664626E-09 SIG(3,2)=-1.565241E-09 SIG(3,3)= 4.533413E-10

J= 1 GAUSSIAN A = 1260.041 STD DEV.= 0.556189 GAUSSIAN FIT CHISGR= 0.4@6252E-01
J= 2 GAUSSIAN A = 2.000 STD DEV.= 0.002483 GAUSSIAN FIT CHIZQR= 0.406252E-01
J= 3 GAUSSIAN A = 5.628 STD DEV.= 0.002707 GAUSSIAN FIT CHISQR= 9.466252E-01

-3.3978
= =-1.1674
= @.7055

X= -10.0608 YMEAS= 6.600 GAUSSIAN FIT= 5.796 STD. DEV. OF FIT= 0.0170 ERROR
X= -8.000 YMEAS= 14.600 GAUSSIAN FIT= 13.837 STD. DEV. OF FIT= 6.0232 FERROR
X= -6.000 YMEAS= 28.000 GAUSSIAN FIT= 28.198 STD. DEV. OF FIT= 0.6372 ERROR
X= -4.6060 YNEAS= 49,000 GAUSSIAN FIT= 49.855 STD. DEV. OF FIT= ©.63%4 ERROR
X= -2,000 YMEAS= 73.000 GAUSSIAN FIT= 72.854 STD. DEV. OF FIT= €.03%72 ERROR -0.19%4

%
%
%
% 0.1132
%
#= 11 X= 0.660 YMEAS= 92.000 GAUSSIAN FIT= 92.867 STD. DEV. OF FIT= €.6397 ERROR %= 6.399%2
%=
7~
%
%
%

¥
W
O N ML=

= 18 X= 2.000 YMEAS= 100.000 GAUSSIAN FIT= 99.971 - STD. DEV. OF FIT= 6.0421 ERROR -6.06292
= 15 X= 4.000 YMEAS= 92.000 GAUSSIAN FIT= 92.368 STD. DEV. OF FIT= 0.0887 ERROR %= 0.3999
= 17 X= 6.000 YMEAS= 73.000 GAUSSIAN FIT= 72.853 STD. DEV. OF FIT= 0.0392 ERROR %= -0.1981
#= 19 ¥= 8.660 YMEAS= 49.6€00 GAUSSIAN FIT= 49.056 STD. DEV. OF FIT= 0.0440 ERROR %= 0.1151
#= 21 ¥= 10.600 YHEAS= 23.800 GAUSSIAN FIT= 28.198 STD. DEV. OF FIT= €.0416 ERROR %= 0.7061

Figure A3b. TEST3.F4 A Gaussian Fit
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G *******!$*************** TEST4.F4 Fackkiorkkiokdrdkskikkkiirs

€ SOLVES THE SIMPLE TRANSPORT FQUATION IN HORZ. PLANE.

C

49

3 o1
e

4 I
[

o1 e
< B

Gaoa

COMMON ~MATR- R(5,5,39)
DIMENSION SIGUV2(16,10),DERIV(3)
COMMON/LSQ/NTERMS , SIGUV2

DIMENSION X(12),Y(12),SIGMAY(12),YFIT(12) ,A(10),SIGMAA(10),
1 FVALU(1©) ,3AN(12) ,IMEFIT(12) ,SICIA(12) ,SIGFIT(12)

DIMENSION RIM11(¢12),RM12(12),RBM15(12)
DATA X~ 12%1.6/

DATA XIA¥/¢.286,9.323,6.318,6.212,0.263,0.264,0.210,0.289,

1 9.367,6.595,0.695,0.724/
DATA SIGQIA/12:% ©.00656/

DATA RM11-1.9,1.95,6.86953,0.27Y873,-0.64124,-0.34625,-0.49928,

1 ~-1.67818,-1.78713,-3.568042,-4.22513,-4.43354

DATA RI{12/€.134,6.17817,0.1978%,6.18399,0.22135,6.26032,

1 ©.27364,6.40807,6.55118,6.89764,1.64334,1.08541~/

DATA RI16--1.5693,~1.69268,~-1.66333,~-6.88385,~-0.63175,

1 -8.40172,-6.36851,-9.61612,0.35738,1.259929,1.64179,1.75159/

DATA WPTS, 10UT,MODE, {HV,BLK

17 12, i, 1, 6, * '/
NUMT = 3

DHOM = 6.12

Do 36 K = 1,NPTS

DO 36 J = 1,5

DO 38 1 1,5
R(IL,J,K) = 6.0

DG 46 K=1,NPTS

R(1,1,K) = RH11(K)
0(1,2,I10) = RM1200
1(1,5,K) = RMISUI0

T(K) = HMA¥(QO¥»k2 — (DHOM* R(1,5,K) JI#x2
BIGHAY (IO = 2, @ MFMAXKAD % SIGTA(K)

CALL LSQFIT (¥,Y,SICMAY,NPTS,NUMT, IHV,MODE,YFIT,A,SIGMAA,FVALY,

1 CHIS@R)

WRITE (I0QUT,278)
Do §@ J=1,RUMT
VRITE(IOUT,?6)J,A(J),SICHAA(T) ,FVALU(J) ,CHISQR

FORMAT(3X,'J= *,I2,2%,’A= ' ,F8.6,2¥,'SIGMAA= * ,F8.6,2X,

1 'FVALU= * ,E12.4,2¥,’CHISGR= * ,E15.6)
VRITE(CIQUT,276)

VRITESIOUT, 55)

FORMATL' (19X, * COVARIANCE MATRIX® ,~)

™ B8 1=1,NUMT

WRITE(IQUT,5¢) (BLY,1,J,SIGUVZ(1,J),J=1,1)

FORMAT (2X,92(A1,°816(* ,11,°,°,11,*)=",1PE138.6,1X)
WRITECIQUT,27@)

FIND TWISS PARAMETERS AND STANDARD DEVIATIONS

HEPS = A1) ® A(3) ~ A(B)k%2
IFGEPS 6T, ©.)C0 TO 75

. Figure A4a.

)

TEST4.F4 Horizontal Fitting

P—,

4



[ X 2l 4

WRITE(IOUT, 65)

65 FORMAT (18X, " %% EMITTANCE NOT REAL ks’ )
G0 TO 236

It] EPS = SQRT(XEPS)

ALPHA = -A(2)/LEPS

BETA = A(1)/EPS
DERIV(1) = @.,.5%A(3)/EPS
DERIV(Z) -A(2)/EPS
DERIV(3) 6.5%AC1) /TIPS
SICEPS = STDEV(DERIV)
EPS3 = EPS:#*k3

DERIV(1) = 0.5kA(2)*A(3)/EPS8
DERIV(Z) = (-1.6/EP3) — (A(2)%%2)/EPS3
BERIV(3) = 0.5k A(1) *A(2)/EPS3

SIGALP = STDEV(DERIV)

DERIV(1) (1.6/EP8) - (A(1)*A(3)%0.5)/EPS3
DERIV{(2) A(1)#A(2)/EPS3

DERIV(3) (=@.5)%(A(1)%%2)/EPS3

SIGBET = STDEV(DERIV)

O FIND CHISOR FOR DEAM SIZE & STD. DEVIATIONS FOR FITTED SIZE.
BCHISQ = 6,
DO 20 J=1,NPTS
ALEFITWI) = SQRT( YFIT(J) + ( DMOMXR(1,5,J) )%k%2 )
IDET2 = 2.6 % XErITW)
BO 85 IK = 1,3
s BERIV(IX) = (FCTN(®.,J,IK,IHV) ) /XMXFT2
SIGFIT(J) = STDEV(DERIV)
29 BCHISQ = BCHISQ + (IMXFIT(J) — XMAXK(J) %2
NFREE = NPT8 - NUMT
BCHSER = BCHISQ TLOAT{(NFREE)

160 WRITE(IOQUT,119)ALFHA,SIGALP,BETA,SIGBET, PS, SIGEPS , BCHSQR
116 FORMAT (4%, * ALPHA= *,¥8.5,3X,’STD. DEVIATION = ' ,F8.5,/,

1 4¥,’BETA= °,F8.5,3X,’STB. DEVIATION= ' ,F8.5,/,

2 4¥%,’EPSILON= °,F10.8,3¥,'STD. DEVIATION= *,F10.8,/,
3 43, 'CHISGR = *,E15.6)

120 WRITE(IQUT,279)

DO 136 J=1,NPTS
ERROR = 166, * (XDFIT(J) - XMAX(JI) )/XMAK(J)

130 VRITE(IQUT, 14¢) J,¥MAX(J) ,XMEFIT(J) ,SIGFIT(J) ,ERROR

140 FORMAT(3X,"J =’ ,12,13,  XMAX= ' ,F8.5,2%,'¥MAX FIT= '’ ,F8.5,2X,
1 'STD. DEVIATION= ’,F8.5,2X,’ERROR% =°,F8.4)

279 FORMAT(1X, /)

280 FND

FUNCTION FCOTN(X,I,J,JHV)
COIMON ~MATR/R(5,5,30)
FCT = O,

IF(J.EQ@, 1IFCT = R(1,1,1)
IF(J.BQ, 2) FCT = Z. #* R(
IT(J.E@. 3)FCT = R(1,2,1)
FCTN = FCT

RITURN

END

ale

,I) % R(1,2,1)

e

(Rl ]

;,l;
14
*

1o 3% =
¥ =%

’

Figure A4b. TEST4.F4 Horizontal Fitting
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J= 1 014373 SIGMAA= .000114 TVALU=
J= 2 A LO7TH634 BIGHAA= .006245 TFVALU=
J= 8 .744365 SIGHMAA= .601665 FVALU=

"

COVARIANCE MATRIX

81G6(1,1 298575E-08

= 1.
B81G(2,1)= 1.603331E-08 SIG(2,2)= §5.980903E-08
==Y .219602F~-68 SIG(3,2)= 2.116552E-7 8IG(3,3)~

SI1G(@3,1

ALPHA= -8,93478 STD. DEVIATION = 0.00421
BETA= 6.19022 STD. DEVIATION= ©6.00859
EPSILON= 873556254

CHIS@R = 6.182%968E~06

J = 1 HAX= ©.286006 XMAX FIT= 0.238588 STD.
J = 2 ¥HMAX= 6.32306 MAX FIT= 0.32315 STD.
J = 3 XHAX= €.31886 IMAX FiT= €.31828 STD.
J = 4 HAX= @.21200 XHAX FIT= €.21168 STD.
J = b XMA¥= ©.20306 XMAX FIT= 6.20237 STD.
J = 6 XMAX= 6.20460 XMAX FIT= 0.20434 STD.
J = 7 XMA¥= ©.21666 XMAX FIT= 0.206993 8TD.
J = 8 XMAX= ©.28660 IMAX FIT= 6.28620 S8TD.
J = 9O HAN= 6.367%% MAX FIT= 0.36785 STD.
J =106 iAX= 0.352560 XMAX FIT= 6.59529 STD.
J =11 ¥MAX= ©.69568 DAY FIT= 0.69494 8TD.
J =132

HMAX= 6.72400 HMAX FIT= 0.72377 STD.

0.6000E+60
@ ,22408+09
0,4856E+06

STD. DEVIATION= .00837361

DEVIATION=
DEVIATION=
DEVIATION=
PEVIATION=
DEVIATION=
DEVIATION=
DEVIATION=
DEVIATION=
DEVIATION=
DEVIATION=
DEVIATION=
DEVIATION=

CHISOR=
CHIZ@QR=
CHISGR=

0.411397E+00
0.411397E+G0
@. 11 297E+00

2.773617E-06

9,00028
0.00029
Q.6062Y
0.00017
0.00020
0.060022
0,00022
9 .00024
0.00622
0.,00024
G.69039
6.06003%

ERROR%
ERROR%
ERRGSE
ER{tdut
ERROR%
FERROR%
ERRORZ
ERRO17
ERNOIU.
ERROR%
ERROR%
ERRORZ

£ 2 S (S [ 1 N E A S LI | B |}

~-0.06426
0.0476
0.0896
~-%.1563
-4.3113
0.1689
-0.0346
2.0704
G.0147
&. 0481
~&. 6089
-6.6323

Figure A4c. TEST4.F4 Horizontal Fitting
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SOLVES THE SIMPLE TRANSPORT FQUATION IN HORZ. 8 VERT. PLANES.

COIRION ~MATRZ R(5,5,39)

DIMENSION X(12),Y(12),SIGHAY(12),YFIT(12),A(10) ,81GMAA(10),
1 FVALUC1G) ,39a3(12) 3INFIT(12) ,SIGRMA1L2) , YMAN(12) XY (1i2),
2 SICYTIHA(L12) ,8IGPIT(12) ,DERIV(3) .
DIMENSION RM11(12),RM12(12),RMI15(12),BH33(12) ,RM34(1323,

1 RM35(12)

DATA X-12%1.0/

DATA XMA¥/6.286,0.823,0.318,9.212,0.203,9.204,0.219,0.289,

1 0.367,0.595,0.695,6.724/

DATA SIGHIA/12% 0.01/

DATA YMAX-6.697,0.134,0.190,0.345,0.371,9.35%,0,283,8.328,

1 0.293,86.171,6.157,0.158387

DATA SIGYMA/12% 0.61/

DATA RM11-/1.6,1.6,0.86953,0.27873,-0.04124,-0.34425,-0.40928,
1 -1.97818,-1.78713,-3.56042,-4.22518,-4.43354~

DATA RI12-6.134,0.17817,0.1978%,06.18399,0.22135,0.26032,

1 0.27384,9.46867,0.55118,0.89764,1.643834,1.08541~

DATA RH15/-1.5683,-1.69263,-1.606333,-0.83385,-0.63175,

1 -9.40172,-06.36851,-9.01612,0.35733,1.259%%,1.64179,1.7515%/
DATA T133-1.6,0.99993,1.13612,1.63344,1,5634%,1.47243,1 .4.544,
1 6.8%495,9.33269,-1.92609,~-1.68084,~1.76614~

DATA RI34-€.134,6.17817,0.256687,0.43769,9.46214,0.47586,0.44787,
1 ©.38311,8.29326,6.07615,-6.81569,-0.04211/

DATA RM35-/12 % ©.67

DATA NPTS, I0UT,BLK
| B i2, i, * /s

NUHT = 3

DIoM = 9.12

B0 86 X = 1,NPTS
36 J =1,8

LD 3¢ 1 = 1,5
R(1,J,K) = 6.0

Do) 5@ K=1,NPTS
R(1,1,K) = RMil1(K)
R(1,2,K) = RMI2(X)
n{i,5,K) = RMIB(KD
R(3,3,K) = RM3I3{XD
B(3,4,I) = RMI4I)
R(3,5,K) = RM35(KD)
iav = 1

DO 410 WNPLAN = 1,2
HOopDE = 1

IFP(NPLAN .FQ@. 2) GO TO 110
WRITE(IOUT,T6)

FORMAT(1X, /7,203, HORIZONTAL DATA ’,”)
DO 926 K = 1,WPTS
Y)Y = XMAX (K #42 — (DMOM: R(1,5,K) I%x2

Figure A5a. TEST5.F4 Horizontal & Vertical Fitting
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Appendix B -~ The Necéssary Fortran Source Routines

The necessary routines are:

1)
2)
3)
4)

LSQFIT -~ least square fit subroutine
FCTN -- a function routine
MATINV -- inverts a symmetric two~dimensional matrix

STDEV —-- calculates standard deviations for modified equations.

The Fortran Source routines are included:

B-1



zivivislivivivlielvivivivivivivivlvlvivivielviviviviviolviviclvlicliviviolvivivivivivlvlviviviviviviviviviviolvolvio]w!
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1/17/84 — REMOVED REGRE.F4 ROUTINE & ADDED STDEV FUNCTION.

THIS IS A LIST OF SUBROUTINES THAT CAN BE USED TO CALCULATE THE
EMITTANCE OF A BEAM FROM FLAG SIZES. BESIDES DOING REGRESSION
ANALYSIS, IT CALCULATES STD. DEVIATIORS 8 CORRELATIONS.

THE ROUTINES ARE FROM: BEVINGTON "DATA REDUCTION & ERROR
ANALYSIS FOR THE PHYSICAL SCIENCES".

STDEV -- ADDED
LSQFIT -— MODIFIED FROM LEGFIT IN BEVINGTON.

SUBROUTINE LSQFIT

PURPOSE
MAKE A LEAST-SQUARES FIT TO DATA WITH A LINEAR EQUATION WITH
CONSTANT COEFF.

USAGE
CALL LSQFIT(X,Y,SIGMAY,NPTS,NUMT, IHV,MODE,
YFIT,A,SIGMAA,FVALU,CHISQR)

DESCRIPTION OF INPUT PARAMETERS
X —— ARRAY OF Z LOCATIONS OR QUAD VALUES(INDEP. VARIABLE)
Y —— ARRAY OF DATA POINTS FOR DEPENDENT VARIABLE.
SIGMAY -- ARRAY OF STANDARD DEVIATIONS FOR Y DATA POINTS.
NPTS - NUMBER OF PAIRS OF DATA POINTS.
NUMT -- NUMBER OF TERMS IN THE FUNCTION
NUMT=3 TO SOLVE FOR Al,A2,A3
NUMTI'=4 TO SOLVE FOR Al1,A2,A3,AND A4
IHV —- = 1 FOR HORZ. 8 = 3 FOR VERTICAL.
MODE -~ DETERMINES MODE OF WEIGHTING LEAST-SQUARES FIT.
+2 (SAME AS INSTRUMENTAL TO CALCULATE COEFF BUT STD.
DEVIATIONS CALCULATED FROM CHISQR(AS MODE= 6)
+1 (INSTRUMENTAL) WEIGHT(I) = 1./SIGMAY(I)%%2
® (NO WEIGHTING) WEIGHT(I) = 1.
-1 (STATISTICAL) WEIGHT(I) = 1./Y(I)

DESCRIPTION OF OUTPUT PARAMETERS

YFIT —— ARRAY OF CALCULATED VALUES OF Y

A ~- ARRAY OF COEFFICIENTS OF POLYNOMIAL

SIGMAA —— ARRAY OF STANDARD DEVIATIONS FOR COEFFICIENTS.

SIGUVZ —— ARRAY OF VARIANCES & COVARIANCES(U,V) -— AVAILABLE ONLY
THRU COMMON/LSQ~

FVALU -— ARRAY OF FVALUES (NORMALIZED CHANGE OF CHI SQUARE) FOR
EACH COEFFICIENT.

CHISQR -~ REDUCED CHI SQUARE FOR FIT.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED.
MATINV(ARRAY, NTERMS, DET)
-~INVERTS A SYMMETRIC TWO-DIMENSIONAL MATRIX OF DEGI{E
NTERMS AND GALCULATES ITS DETERMINANT.

Figure Bl. The Fortran Source Routines
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C COMMENTS: 40

G DIMENSION STATEMENT VALID FOR NPTS UP TO 30~ AND NUMT UP TO 1¢.
c

SUBROUTINE LSQFIT(X,Y,SIGMAY,NPTS,NUMT, IHV,MODE,

1 YFIT,A,SIGMAA,FVALU,CHISQR)

C
DOUBLE PRECISION P,BETA,ALPHA,CHISQ
COMMON/LSQ/NTERMS , S1GUV2
DIMENSION X(1),Y(1),SIGMAY(1),YFIT(1),
1 A(1),SIGMAA(1),FVALU(1),SIGUV2(16,10)}
DIMENSION WEIGHHT?@%,P(&ﬁ%l@),BETA(IQ),ALPHA(IO,IO)
c 0 4o
C ACCUMULATE WEIGHTS AND COEFFICIENTS
C
i1 NTERMS = 1
NCOEFF = 1
JMAX = NUMT
Q ———————
20 Do 40 1 =1,NPTS
21 IF(MODE)22,27,29
22 IF(Y(1) )25,27,23
23 WEIGHT(I) = 1., 7/ Y(I)
GO0 TO 31
25 .WEIGHT(I) = 1. /(~Y<(I) )
GO0 TO 31
27 WEIGHT(I) = 1.
GO TO 31 -
29 WEIGHT(I) = 1. 7 SIGMAY(I)%x%x2
y —
31 DO 36 L=1,NUMT
. TEMP = FCTN(X(I),I,L,IHV)
36 P(I,L) = TEMP
C ——m
40 CONTINUE
O e o o e
Cc
g ACCUMULATE MATRICES ALPHA AND BETA
C =~
51 DO 54 J=1,NTERMS
BETA(J) = 0.
DO 54 K=1,NTERMS
54 ALPHA(J,K) = 0.
C e ——
61 DO 66 I=1,NPTS
DO 66 J=1,NTERMS
BETA(J) = BETA(J) + P(I,J)*Y(I)*WEIGHT(I)
DO 66 K = J,NTERMS
ALPHA(J,K) = ALPHA(J,K) + P(I,J) % P(I,K)WEIGHT(I)
86 ALPHA(K,J) = ALPHA(J,K)
G
c
c INVERT CURVATURE MATRIX ALPHA
C
() [
91 DO 95 J=1,IJMAXY

AdJ) = 0.

SIGHAA(J) = o. Figure B2. The Fortran Source Routines
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¢ ——

9”7
C ——-

101

103

GONTINUE

DO 97 I
YFIT(I)

1,NPTS
0.

CALL MATINV(ALPHA,NTERMS,DET)

IF(DET)>111,103,111
CHISQR = @.
GO TO 170

G CALCULATE COEFFICIENTS,FIT,AND CHI SQUARE

DO 115 J=1,NTERMS
DO 113 K=1,NTERNMS
AWJ) = AWJ) + BETA(K) % ALPHA(J,.K)

DO 115 I=1,NPTS
YFIT(I) = YFIT(I) + A(J) % P(I,J)

CHISQ = 0.
DO 123 I =1,NPTS

CHISQ = CHISQ + ( Y(I) - YFIT(I)} )%%2 * WEIGHT(I)

FREE = NPTS - NCOEFF
CHISOR = CHISQ@/FREE

FOR END OF FIT

IF (NCOEFF ~ 1)187,137,141
NTERMS NTERMS + 1
NCOEFF NCOEFF + 1

CHISQ1 CHISQ

GO TO 5

-

FVALUE = ( CHISQ1 ~CHISQ)-/CHISQR
FVALU(NGOEFF) = FVALUE

IF (NTERMS -JMAX) 137,151,151

GO0 TO 51

C CALCULATE REMAINDER OF OUTPUT

IF (MODE)152,154,152

VARNCE = 1.

IF(MODE .EQ. 2)VARNCE = CHIS@R

GO TO 155

VARNCE = CHISQR

DO 156 J=1,NTERMS

SIGMAA(J) = DSQRT( VARNCE#®ALPHA(J,J) ?
DO 360 IU = 1,NTERMS

DO 366 IV = 1,NTERMS

SIGUV2(IU,IV) = VARNCEXALPHA(IU,IV)
GO TO 1760

RETURN

END

Figure B3,

The Fortran Source Routines
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10
15
20
25

40
50

FUNCTION FCTN (BEAM TRANSPORT) )
PURPOSE~~ EVALUATE TERMS OF BEAM SIZE EQUATIONS FOR HORZ. 8 VERT.

HORZ:

(XMAX)I~2 ~R(1,5)°24DMOM~2 = R(1,1)72 *A(1) + 2R(1,1)*R(1,2)%A(2)+
+ R(1,2)~2 %A(3)

VWHERE A(1) = SIG(1,1); A(2) = SIG(2,1); A(3)= SIG(2,2)

VERT.
(YMAXD~2 = A(1) %R(3,3)+2 + 2R(3,4)*B(3,8)*%A(2) + A(3)*%R(3,4)+2

WHERE A(1) = SIG(3,3); A(2)= SIG(4,3); A(3)= SIG(4,4)
USAGE—~- RESULT = FCTN(X,1,J,JHV)

DESCRIPTION OF PARAMETERS:

X -- ARRBAY OF DATA POINTS FOR INDEP. VARIABLE( FLAG "Z" LOCATION)
I -- INDEX OF DATA POINTS (1-30 FOR 30 FLAGS)

J —~-~ INDEX OF TERM IN FUNCTION (1-4)

JHV --~ =1 FOR HORZ. =3 FOR VERT.

R(5,5,30) -- TRANSPORT MATRIX TO EACH OF 30 FLAG LOCATIONS

FUNCTION FCTN(X,I, J, JHV)
COMMON ~MATR- R(5,5,30), DMOM
DIMENSION X(1)

IHV = JHV
IF(C (J.LT.1) .OR. (J.GT. 4) )GO TO 5@

GO TO (10,15,20,25,50)J

FCT = R(IHV,IHV,I)**k2

GO TO 40

FCT = 2.0% R(IHV,IHV,I)* R(IHV,IHV+1,I)
GO TO 40

FCT = R(IHV,IHV+1,1)%%2

GO TO 4o

FCT = R(IHV,3,I)%%2

FCTN = FCT
RETURN
END

Figure B4. The Fortran'Sourée.Bqupines
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G FURCTION STDEV (DERIVATIVES)
G

C PURPOSE: CALGCULATE THE STD. DEV. OR SORT(VARIANCE) FOR MODIFIED
C FQUATIONS.

Cc

C INPUT PARAMETERS:

g NTERMS -- NUMBER OF TERMS IN THE FQUATION: <(FROM LSQFIT)

Y = AIX1I(Z) + A2X2(Z) + A3X3(Z) ...

SIGUV2 -- ARRAY OF VARIANCES 8 COVARIANCES OBTAINED FROM LSQFIT;
IN THE ORDER OF THE COEFFICIENTS OF THE EQUATION.

SIGUV2(1,1) SIGUV2(1,2) SIGUV2(1,3)
SIGUV2 = SIGUV2(2,1) SIGUV2(2,2) SIGUV2(2,3)
SIGUV2(3,1) SIGUV2(3,2) SIGUV2(3,3)
WHERE :
SIGUV2(1,1) = VARIANCE OF Al OR (STD. DEVIATION OF Al)#®%2
S I G_U'V2 ( 2 . 2 ) = n " A2 " n n n A2 L]
S I GUV2 (3 . 3 ) = [ 1 A3 u n E n A3 u
SIGUV2(1,2) = COVARIANCE BETWEEN Al AND A2
SIGUV2(1,3) = COVARIANCE BETWEEN Al AND A3... ETC.

SIGUV2 IS A SYMMETRICAL ARRAY -- SIGUV2(1,2) = SIGUV2(2,1)

OUTPUT PARAMETER
STDEV ~- STANDARD DEVIATION OR S@RT(VARIANCE) OF X FOR
X = F(A1,A2,A8...)

PROCEDURE:

(STD. DEV)*#2 = VARIANCE = ((DERIV))T * ((SIGUVZ2)) * ((DERIV))

WHERE ((DERIV))T IS THE TRANSPOSE OF THE DERIV VECTOR.
FUNCTION STDEV(DERIV)

COMMON-LS@~ NTERMS,SIGUV2(10,10)
DIMENSION DERIV(10),WORK(10)

Cc
STDEV = 0.
VARIAN = 0.
DO 10 J=1,NTERMS
10 WORK(J) = @,
G
DO 20 J= 1,NTERMS
DO 20 1 = 1,NTERMS
20 WORK(J) = WORK(J) + SIGUV2(J,I) * DERIV(I)
c
DO 46 J = 1,NTERMS
40 VARIAN = VARIAN + DERIV{(J) * WORK(J)

Figure B5. The Fortran Source Routines

DERIV -~- VECTOR OF DIMENSION NTERMS OF THE PARTIAL DERIVATIVES-—-

IF X = F(A1,A2,A3) THEN:
DERIV(1) = (PARTIAL DERIVATIVE OF X)/(PARTIAL DERIVATIVE OF Al)
DERIV(2) = ¢ n n u n " u n N AD
DERIV(S ) = ¢ " " “ 0 i Ag
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C SUBROUTINE MATINV
¢
C PURPOSE —- INVERT A SYMMETRIC MATRIX 8 CALCULATE ITS DETERMINANT.
c
C USAGE:
C CALL MATINV ( ARRAY,NORDER, DET)
C
C DESCRIPTION OF PARAMETERS
C ARBAY —~ INPUT MATRIX WHICH IS REPLACED BY ITS INVERSE
C NORDER —- DEGREE OF MATRIX (ORDER OF DETERMINANT)
C DET —- DETERMINANT OF INPUT MATRIX
c
C SUBROUTINES REQUIRED —- NONE
c
C COMMENTS: —— DIMENSION STATEMENT VALID FOR NORDER UP TO 10
c
c
SUBROUTINE MATINV (ARRAY, NORDER, DET)
DOUBLE PRECISION ARRAY,AMAX,SAVE
DIMENSION ARRAY(10,10), IK(10),JK(10)
c
10 DET = 1.
c
c
11 DO 100 K= 1,NORDER
c
C FIND LARGEST ELEMENT ARRAY(I,J) IN REST OF MATRIX
o C
b AMAX = O.
21 DO 30 1=K, NORDER
DO 30 J=K, NORDER
23 IF( DABS(AMAX) - DABS( ARRAY(I,J) ) )24,24,30
24 AMAX = ARRAY(I,J)
IK(K) = 1
JK(K) = J
30 CONTINUE
=
c
C INTERCHANGE ROWS & COLUMNS TO PUT AMAX IN ARRAY(K,K)
C
31 IF (AMAX)41, 32,41
32 DET = 6. - |
GO TO 140
41 I = IK®XK)
IF(I-K) 21,51,43
G Pre—
43 DO 50 J= 1, NORDER
SAVE = ARRAY(K,J)
ARRAY(K,J) = ARRAY(I,J)
50 ARRAY(I,J) = -SAVE
C p—
51 J = JK(K)
IF(J-K) 21,61,53
C et e
53 DO 60 I =1,NORDER
SAVE = ARRAY(I,K)
ARRAY(I,K) = ARRAY(I,J)
60 ARRAY(I,J) = -SAVE

Figure B7., The Fortran Source Routines
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¢ accu@)E FLEMENTS OF INVERSE MATRIX

Do 7?0 1=1, NORDER

IF(I-K) 63,70,63

ARRAY(I,K) = —ARRAY(I,K) ~/ AMAX
CONTINUE

DO 86 I=1,NORDER

bo 86 J=1,NORDER

IF(I-K) 74,806,774

IF(J~-K) 75,80,76

ARRAY(I,J) = ARRAY(I,J) + ARRAY(I,K) * ARRAY(XK,.J))
CONTINUE

DO: 90 J=1, NORDER

IF(J-K) 88,90,83

ARRAY(K,J) = ARRAY(K,J) ~/ AMAX
CONTINUE

ARRAY(K,K) = 1.6 / AMAX
DET = DET * AMAX

105

110

DO 13¢ L=1,NORDER

K= NORDER ~-L + 1

J = IK(K)

IF(J~K) 111,111,108

DO 110 1 =1,NORDER

SAVE = ARRAY(I,K)
ARRAY(I,K) = ~ARRAY(I,J)
ARRAY(1,J) = SAVE

I = JK(K)

IF(I-K) 130,130,113

DO 120 J=1, NORDER

SAVE = ARRAY(K,J) .
ARRAY(K,J) = -ARRAY(I,.J)
ARRAY(I,J) = SAVE
CONTINUE

Figure BS.

The Fortran Source Routines
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