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The to-be-built beam t ranspor t  l i ne  w i l l  carry heavy ions from Tandem t o  

AGS for  in jec t ion .  A simple and inexpensive vacuum system for  t h i s  l i n e  i s  

proposed here.  This vacuum system w i l l  have the combination of l i nea r ly  

d i s t r ibu ted  non-evaporable g e t t e r  pumps and small ion pumps, and w i l l  achieve 

u l t r a  high vacuum. 

The Vacuum Requirement 

The tandem-AGS beam t ranspor t  line1 w i l l  t ransport  f u l l y  s t r ipped l i g h t  

ions (up to  S+16 with @ = 0.12) t o  the.AGS r ing  for  i n j ec t ion ,  or  a l t e rna t ive ly  

w i l l  carry p a r t i a l l y  s t r ipped heavy ions ( i . e . ,  A u + ~ O  with 6 = 0.046) t o  the 

to-be-built AGS booster for  acce lera t ion  and s t r ipp ing  before fur ther  accelera- 

t i on  i n  the AGS r ing .  

The requirements for  the r e s idua l  gas densi ty  i n  the vacuum pipes a re  

determined by three major fac tors :  ( a >  nuclear s ca t t e r ing  of the ions by re- 

s idua l  gas atoms; (b) charge exchange through c o l l i s i o n s  between ions and re- 

s idua l  gas molecules; and ( c )  the pressure bump e f f e c t  i n  which the beam 

ionizes  res idua l  gas molecules which a re  then accelerated t o  the wal l  by the 

beam po ten t i a l  and l i b e r a t e  more gas molecules. 

by nuclear s ca t t e r ing  is s m a l l  for  heavy ions (GNS fl 4 x 

i n  nitrogen)' and should not be a l imit ing f ac to r .  

The emittance growth' caused 

A2I3  8'2 cm' 

A t  the projected 108-1010 

ions per pulse ,  the energy of the ionized res idua l  gas molecules i s  too small 



Y 
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( a  few v o l t s )  t o  have s i g n i f i c a n t  desorp t ion ,  and no pressure  bump phenomenon 

is  expected. 

The vacuum requirement w i l l  be dominated by charge exchange between 
- 

ions and r e s i d u a l  gas molecules. 

be est imated by the  following formulae2y3 f o r  @ > 0.01, q < 30; 

E lec t ron  l o s s  and capture  c ros s  sec t ions  can 

-19 -2/5 @-2 cm 2 U L J I 9 X 1 0  q 

-28 5/2 @-7 cm 2 U c ~ 3 X 1 O  q 

The t o t a l  c ros s  s e c t i o n s  (UT = UL + Uc) f o r  8 MeV/A S+16 and 1 MeV/A A u + ~ O  w i l l  

be  1 x cm2 and 3 x cm2, r e spec t ive ly ,  which a r e  i n  f a i r  agreement 

with the  measured ones.ly4 The beam l o s s  due t o  charge exchange can be 

ca l cu la t ed  by 

dlnD = -n 0 dx . 
T 

Here 1-D i s  the  f r a c t i o n  of beam l o s s  a f t e r  d i s t a n c e  x,  n number of  

molecules/cm3. 

and 

UT i s  cons tan t  f o r  t he  700-1000 m Tandem-AGS t r a n s p o r t  l i n e ,  

(1) -nuTx - -3.5 x POTX 1-D = 1-e - 1-e 

. w i t h  P the  N equiva len t  p re s su re  i n  Torr.  For f u l l y  s t r ipped  l i g h t  ions (UT 2 

JI 1 x 10'18 crnz), t he  beam l o s s  due t o  charge exchange w i l l  be  a mere 

0.25% even a t  a p re s su re  of 1 x Torr .  However, t o  have a 1% beam l o s s  f o r  

1 MeV/A A u + ~ O ,  the  vacuum has t o  be  - <1 x 

w i l l  be smaller i f  hydrogen is the  main r e s i d u a l  gas ,  which has  a UT one dec- 

Torr .  Of course the  beam l o s s  

ade lower than n i t rogen .  

To achieve a vacuum of 1 x 10-9 Torr ,  the  thermal outgassing of the  vac- 

uum w a l l  has  t o  be minimized, and high e f f e c t i v e  pumping speed has  t o  be pro- 

vided. An outgassing rate of <1 x 

obtained by i n  s i t u  bakeout a t  100-150°C. 

can be taken; ( i )  us ing  the  convent ional  lumped pump system ( s p u t t e r  ion pump 

Torr*R/socm2 f o r  A 1  and SS can be 

Two d i f f e r e n t  pumping approaches 

0 



. w o r  w/o t i t an ium subl imator)  d i s t r i b u t e d  along the  l i n e ;  and ( i i )  us ing  

l i n e a r l y  d i s t r i b u t e d  nonevaporable g e t t e r  (NEG) toge ther  with small  ion pumps. 

The average pressure  P’ i n  t he  beam pipe  with the  lumped pumps can be 

ca l cu la t ed  by 

- TD CL 2 L 
0 2c s 3 2  P = P  + ~ ( - + - ( - )  ) 0 

(2) . 

Here Po is the  background pressure  of lumped pump; D,  d iameter  of p ipe ;  C ,  l i n -  

ear conductance of  p ipe ;  S, pumping speed of  lumped pump; and L ,  d i s t a n c e  be- 

tween lumped pumps. The r e s u l t s  a r e  l i s t e d  i n  Table I. When l i n e a r l y  

d i t r i b u t e d  NEG and small ion pumps a r e  used, t he  pumping speed is  no longer  

conductance l imi t ed  and the  average pressure  of a c t i v e  gases  a long the  l i n e  is 
- 
P = P C qTD/S . 

0 
( 3 )  

Here S is  the  u n i t  length pumping speed of NEG. The pressure  of nonget table  

gases  (<1% i n  a baked system) can be t r e a t e d  by equat ion ( 2 ) .  

compared with those of the  lumped pump system i n  Table I. 

The r e s u l t s  a r e  

NonevaDorab le  Getter (NEG) 

Any m a t e r i a l s  which pump gases  i n  a vacuum system without  subl imat ion 

can be c a l l e d  nonevaporable g e t t e r  (NEG). Among them, two, with tradenames 

S t l O l  and St707, have been proven s u i t a b l e  f o r  p a r t i c l e  a c c e l e r a t o r  and u l t r a -  

high vacuum ( U H V )  appl icat ion.5d7 Both were developed by S A E S  Getters Inc.  

The St lOl  i s  a Zr84-AI 16 a l l o y  and has  been widely used i n  fus ion  devices  

( i . e . ,  TFTR) in  the  l a s t  10 years .  The newly developed lower temperature St707 

is  a Zr70-V24.6-Fe5.4 a l l o y  with a b iphas i c  s t r u c t u r e  of Z r  and Zr(V0.83F0.17)2. 

The a l l o y s  a r e  h e a t  t r e a t e d  i n  i n e r t  atmosphere i n t o  powder form (125-150 pn~ 

g r a i n  s i z e )  and deposi ted on both s i d e s  of a constantan support  s t r i p  0.2 mm 

t h i c k  and 3 cm wide ( a 8  mg/cm2 o r  16 gm per  l i n e a r  meter ) .  
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NEG pumps gases with two d i f f e r e n t  mechanisms. It forms a s o l i d  solu- 

t i o n  with hydrogen atom, the  hydrogen molecules are adsorbed on the  su r face ,  

d i s soc ia t ed  i n t o  atomic form, and d i f fused  i n t o  the  bulk. A t  low gas load, 

* 
pumping speed is  propor t iona l  t o  r a t e  of d i f fus ion .  

of H2 can be predic ted  by S i e v e r t ' s  l a w  

The equi l ibr ium pressure  

log P (Torr) = 2 log Q (Torr*%/gm) + A - B/T (OK) 

with A = 5 . 2 6 ,  B = 6250 f o r  S t l O l ,  and A = 4 . 4 ,  B = 7000 f o r  St707. The equi- 

l ib r ium pressure  of H2 without gas flow w i l l  be immeasurably low ( i . e . ,  

Torr a t  100 Torr*R/m) . The adsorp t ion  process is  a l s o  r eve r s ib l e .  A t  high 

temperature P w i l l  increase  and can be removed by a u x i l i a r y  pump ( regenera t ion) .  

NEG pumps o the r  a c t i v e  gases (0, 0 2 ,  N2, H20) by forming a s t a b l e  

compound on the  sur face .  

face  area of NEG powder over the  'geometry su r face  a rea  of support s t r i p )  of 

<lo0 and assuming one monolayer of CO, up t o  1 Torr*R/m gas can be coated on 

t h e  surface.  I n  r e a l i t y ,  t he  pumping speed w i l l  diminish t o  a u s e l e s s  l e v e l  

With a sur face  roughness f a c t o r  ( r a t i o  of r e a l  sur- 

e -  
a t  Sg.3 monolayer. A t  t h i s  s tage ,  NEG has  t o  be ac t iva t ed  a t  high tempera- 

t u r e s  which enhance t h e  d i f f u s i o n  of t he  a c t i v e  gases i n t o  the  bulk and create 

a f r e sh  sur face  f o r  subsequent pumping. 

( i . e . ,  4OO0C x 1 h r  f o r  St707, 7OO0C x 30' f o r  S t lOl )  is  done by r e s i s t i v e  

hea t ing  of constantan support s t r i p .  

power w i l l  be required.  

a c t i v a t i o n ,  bu t  a l s o  f o r  optimum pumping (22OO0C) of a c t i v e  gases. 

c u r r e n t  and thermal stress are undes i rab le ,  t he re fo re  we w i l l  only consider 

St707 NEG f o r  our app l i ca t ion .  

The a c t i v a t i o n  a t  high temperatures 

A t  4OO0C, cur ren t  of 70A and 500 w a t t s h  

The StlOl r equ i r e s  h igher  temperatures not only f o r  

The high 

A t  room temperature, NEG does not pump i n e r t  gases (He, CH4, A r  

hydrocarbon); methane w i l l  be cracked i n t o  C and H a t  high temperature and 

pumped accordingly; however, the  speed is  <1 R/s*m. a 
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The pumping speeds of St707 NEG f o r  H2 and CO ( t h e  most common r e s i d u a l  

gases  i n  a baked system) were s tudied  i n  d e t a i l 6  and are shown i n  Fig.  1. 

With speeds of >lo0 R / s * m  f o r  H2 and a c t i v e  gases ,  and outgassing of <1 x 10" 

Torr*R/s*m, p re s su re  of 

and 4 . 4  Torrefilm f o r  H2 and CO, r e s p e c t i v e l y  (equiva len t  t o  #lo0 days'  

Torr can be achieved. A t  gas loads of #lo0 

pumping), NEG has  t o  be  a c t i v a t e d  t o  r e s t o r e  the  pumping speeds.  

p a c i t y  of the a c t i v e  gases  i s  $50-100 Torr*R/m, which. r ep resen t s  hundreds of 

a c t i v a t i o n .  The NEG w i l l  r e t a i n  h a l f  of i t s  pumping speeds even a f t e r  40-50 

Life t ime ca- 

exposures t o  atmosphere pressure .  

NEG f o r  Tandem-AGS beam t r anspor t  1 ine  

To incorpora te  NEG s t r i p s  i n t o  synchrotron,  t he  s i z e  of the  vacuum cham- 

be r s  and the  magnet po le  gap have t o  be l a r g e r ,  which w i l l  d r a s t i c a l l y  in- 

crease the  c o s t  of magnets. N o  l i m i t a t i o n s  of these  s o r t s  e x i s t  i n  t he  beam 

t r anspor t  l i n e .  

t he  heavy ions from Tandem are about one inch.1,8 

The maximum v e r t i c a l  and h o r i z o n t a l  beam excursions f o r  a11 

The NEG s t r i p s  with insu la-  
e 

t o r s  w i l l  have a v e r t i c a l  dimension of pl'' and can lay  comfortably in s ide  a 

p ipe  of - >3" diameter .  

The St707 NEG s t r i p s  come from manufacture with a 10 m standard length.  

Within vacuum s e c t o r s  of 200 f e e t  i n  length ,  s ix  s t r i p s  w i l l  be requi red .  

They can be powered i n  series o r  i n  p a r a l l e l '  with AC o r  DC during 4OO0C ac t iva -  

t i o n  with a maximum load of s500 w a t t s / m  (70 amps). The r e s i d u a l  gas  composi- 

t i o n  i n  a modestly baked (<150°C) vacuum chamber i s  s l O %  H 2 ,  J30% a c t i v e  gases  

(CO, CO2, H2O) and #l% i n e r t  gases  ((334, H e ,  Ar).  

by NEG w i l l  be  removed by small s p u t t e r  ion pumps ( i . e . ,  20 R / s )  s t a t ioned  

The i n e r t  gases  not  pumped 

every 100-200 f e e t .  The average pressures  (N2 equiva len t )  based on NEG and 

small s p u t t e r  ion pumps are given i n  Table I i n  comparison with those pumped 

by l a r g e  s p u t t e r  ion pumps alone. e 
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Tes t s  were done on a prototype vacuum pipe  f o r  t r a n s p o r t  l i n e .  A 2 . 7  m 

@ long NEG s t r i p  w a s . i n s t a l l e d  i n  a 3 m long 8.8 cm I . D .  s t a i n l e s s  s t d e l  p ipe  

with a 20 a / s  s p u t t e r  ion pump mounted a t  one end and a BA gauge a t  the  o the r  

end. I n  these  test  runs ,  t he  NEG s t r i p  w a s  a l s o  used as an i n t e r n a l  h e a t e r  

f o r  i n  s i t u  bakeout. 

on the  pipe.  

hea t ing  the  NEG s t r i p  t o  d?300°C with 50 A c u r r e n t  ( 0 5 0  w/m). 

No thermal i n s u l a t i o n  and e x t e r n a l  h e a t e r s  were wrapped 

The p ipe  w a s  roughed down by turbomolecular pump and baked,by 

L i t t l e  ac t iva-  

t i o n  of NEG w i l l  occur a t  3OO0C, which preserves  the  capac i ty  of g e t t e r  f o r  

UHV.  Within 2 hrs,  temperatures of f l lOO°C w a s  reached on the  pipe.  Af te r  

bakeout a t  fllOO°C f o r  6 hours ,  t he  NEG w a s  a c t i v a t e d  a t  4OO0C (70  A, 500 

watts/m) f o r  30 min. A t  the  end of a c t i v a t i o n ,  the  20 f i l s  SIP w a s  turned on 

and the  turbo w a s  valved o f f .  

The pump down curve i s  shown i n  F ig  2. 

s tud ied  by turn ing  o f f  the  ion pump f o r  3 days; p re s su re  of 

maintained. 

P res su re  of 10-l' Torr  w a s  reached i n  one day. 

The e f f e c t  of i n e r t  gases  w a s  a l s o  

Torr  w a s  

I n  the  beam t r anspor t  l i n e ,  the  i n e r t  gases  w i l l  be removed by 
a 

the  next ion pump and pressure  rise due t o  one ion pump f a i l u r e  w i l l  be negl i -  

g i b l e  (Table I ) .  

A 200 f t .  vacuum system s imula t ing  the  vacuum s e c t o r  o f  beam t r a n s p o r t  

l i n e  is under design and cons t ruc t ion .  The i s o l a t i o n  of NEG s t r i p ,  the  ther-  

m a l  expansion and o the r  ope ra t iona l  procedures w i l l  be  s tud ied  i n  d e t a i l  by 

t h i s  test l i n e .  

Conclusion 

A vacuum system using a l i n e a r l y  d i s t r i b u t e d  MEG/ion pump combination 

w i l l  o f f e r  s i m p l i c i t y  i n  opera t ion ,  rap id  pump down Torr  i n  one day) ,  

b e t t e r  average pressure  and low c o s t  i n  cons t ruc t ion ,  and should be appl ied  t o  

the  vacuum systems of Tandem-AGS beam t r anspor t  l i n e  and o the r  similar systems " 

( i . e . ,  U-line). 
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Table I. Comparison of Average Pressure and Cost of  Pumps,,Using Sputter 

Ion Pump With or  Without NEG. 

b 
d( inch) C - 

pH2 
. c  - 

pCO, C 0 2  9 H 2 0  
C - 

pCH4, A r  
Cost/ 
200 Id 

NEG 50 3.5 6.5-11 8.3-11 1.6-10 3-10 7.2K 

SIP(20!Z/s) 100 3.5 6.5-11 8.3-11 4.5-10 6-10 5.6K 

200 3.5 6.5-11 8.3--11 1.4-9 1.5-9 4.8K 

50 6 1 .l-10 1.4-10 3.9-10 6.4-10 7.2K 

100 6 1 .l-10 1.4-10 8.6-10 1.1-9 5.6K 

200 6 1 .l-10 1.4-10 1-9 1.3-9 4.8K 

._ 

SIP (200Rls) 50 3.5 1.5-9 2.2-9 7-11 3.8-9 20K 

100 3.5 5.4-9 8 -9 2.7-10 1.4-8 10K 

50 6 1-9 1.1-9 4-1 1 2.2-9 20K 

100 6 2.8-9 3.5-9 1.2-10 6.4-9 10K 

aDistance between sput te r  ion pumps. 
bInner diameter of  vacuum pipes .  
‘Par t ia l  pressures based on outgassing rate of 1 x 

dDoes not inc lude power supply . 
Torre!Z/secm2 with 70% 

H2,  30% ac t ive  gases and 1% i n e r t  gases. 
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