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1. Introduction 

The AGS booster i s  important f o r  t h e  R H I C  p ro j ec t ,  t h e  AGS polar- 
i zed  proton p ro jec t  and t h e  f u t u r e  upgrade of AGS pro jec ts .  I n  t h i s  
paper ,  we s h a l l  study some of t he  co r rec t ion  systems i n  t h e  booster. 
Section 2 reviews b r i e f l y  t h e  booster l a t t i ce  of Ref. 1 and Section 3 
discusses t h e  e f f e c t  of t h e  chromatic sextupoles. Section 4 d i scusses  
t h e  depolar iza t ion  resonance s t r eng th  f o r  t h e  polarized proton and t h e  
closed o r b i t  cor rec t ion  f o r  random alignment e r r o r .  The conclusion i s  
given i n  Section 5. 

0 

Our study was  performed i n  Nov.-Dec. 1985 p r i o r  t o  t h e  Booster 
Task Force. 
W e  f e e l  however t h a t  our study may be usefu l .  
an AGS Tech. Note. 

A more updated study w i l l  be worked out by E.D. Courant. 
Thus we publish t h i s  as 

2. Booster Lattice 

Figure 1 show t h e  l a t t i c e  func t ion  f o r  t h e  BNL Booster design. 
The be ta t ron  phase advance of each FODO cel l  i s  approximately 72'. 
missing d ipole  ha l f  cells are arranged' i n  t h e  manner of easing t h e  
i n j e c t i o n  and ex t r ac t ion  problems. The machine cons i s t s  of s i x  super- 
periods. 

4.75. The systematic ha l f  i n t ege r  stop- The be ta t ron  tune i s  Qx 
bands a t  Q=3 and 6 are f a r  away from t h e  proposed operation tune. 
Figure 2 show t h e  ha l f  i n t e g e r  stopband width3 as a func t ion  of t h e  
be ta t ron  tune with 4 sextupole magnet (2  family) per  superperiod. We 
observe t h a t  t h e  ha l f  i n t e g e r  stopband width a t  Q,= 
which i s  a r a t h e r  s m a l l  number. The stopband width (with 4 sextu- 
poleslsuperperiod) depends s t rongly  wi th  t h e  tune a t  V = 6. 
t h e  proposed operation poin t ,  t h e  stopband width i s  s m a l l .  

Two 

The circumference of t h e  Booster i s  1/4 of t h a t  of t h e  AGS. 

= QY= 

= 4.75 i s  0.006, 

However a t  

0 Y  



3. Chromatic Correction Sextupoles a 
Almost a l l  modern acce le ra to r s  have very e labora te  chromatic sex- 

tupole  cor rec t ion  schemes. Although t h e  booster i s  a simple machine, 
one should inves t iga t e  t h e  impl ica t ion  of various sextupole co r rec t ion  
schemes i n  d e t a i l .  Figure 3 shows t h e  tune and beta-function modula- 
t i o n  as a func t ion  of momentum devia t ion  of p a r t i c l e s  f o r  two family of 
sextupoles (two va r i ab le s  SF and SD only) with one, two, t h r e e  and four  
p a i r s  of sextupole respec t ive ly .  F i r s t ,  we no te  t h a t  t h e  higher order 
e f f e c t  i s  important f o r  one p a i r  of sextupole. With increas ing  number 
of p a i r s  of sextupole,  t h e  momentum dependence becomes l i n e a r .  Figure 
4 shows t h e  amplitude dependence c o e f f i c i e n t s  of t h e  be ta t ron  tunes,  

= av /ae and Q = avx/3e as a func t ion  of t h e  i.e. a = av / a E x ,  

be t a t ron  tune . W e  :gzerved t h a e  t h e  present arrangement has a peak a t  
V = 5.4. On t h e  o the r  hand, when four  p a i r s  of sextupoles are used, t h e  
s i n g u l a r i t y  disappear. It i s  the re fo re  preferab le  t o  have a sextupole 
next t o  every quadhupole. 

Y XY Y T xx 

The reason5 f o r  t h e  peak of axx, CY and ct a t  tune Vx = V = 5.4 
XY YY Y i s  due t o  t h e  f a c t  t h a t  t h e  d ispers ion  func t ion  x 

t h e  SF loca t ion .  
CY and a are la rge .  ing. Therefore these  c o e f f i c i e n t s ,  axx, 

4. Strength of DeDolarizing Resonances 

becomes negative a t  P The chromatic "focusing" sextupoles become defocus- 

xy YY 

Figure 5 shows t h e  sp in  depolar iza t ion  resonance s t r eng th  i n  t h e  
Here we have assumed v e r t i c a l  misalignment of AY G 5 0.1 mm booster. 

and r o t a t i o n  angle e r r o r  of G * 0.1 mrad f o r  t h e  ca l cu la t ion  of t h e  
imperfectfon resonance s t rength .  These random alignment e r r o r s  give 
rise t o  an r m s  closed o r b i t  e r r o r  of 0.37 mm. A set of ho r i zon ta l  and 
v e r t i c a l  o r b i t  d ipole  co r rec to r s  are assumed t o  r e s t o r e  t h e  r m s  closed 
o r b i t  t o  within 0.2 mm (corrected t o  within 0.08 mm i n  t h e  present 
configuration).  

For a 10 c m  long k i cke r  with 10 c m  magnet aper ture ,  t h e  maximum 
s t r eng th  needed i s  about 76 Gauss. The number of t h e  k ickers  needed i s  
about 10 i n  t h e  booster r ing.  When t h e  alignment e r r o r  i s  increased by 
a f a c t o r  of 2 i .e*,  AY G k 0.2 mm and r o t a t i o n  angle of k 0.2 mrad, t h e  
s t r eng th  of t h e  k icker  needed w i l l  be increased approximately by a 
f a c t o r  of two. The number of cor rec t ion  k ickers  needed remain about 
t h e  same. The rms closed o r b i t  e r r o r  i s  0.76 mm and 0.15 mm before and 
a f t e r  t h e  l o c a l  corrections.  

The resonances t h a t  t h e  polarized proton w i l l  see are yG = 2 and 

( see  Fig. 5) i s  below 
3. 
A 0  = 5 10". 
1% depolarization. 
stacked f o r  t ens  o r  tu rns .  
po la r i za t ion  e f f e c t  of beam s torage  i s  proportional- t o  l l € l l / A  =! 5 * 
(2.15 - 2 )  =! 3.3 IOm4 (see eq.(37) of r e f .  6), t he re fo re  t h e  i n j e c t i o n  
s tacking  w i l l  not harm t h e  po la r i za t ion  of t h e  beam. 

The polarized proton i s  acce lera ted  through YG = 3 with a = A(YG)/ 

A t  yG = 2.15, t h e  i n j e c t i o n  polarized beam w i l l  be 
The resonances s t r eng th  of 

Following t h e  Courant and Ruth', t h e  de- 



5. Conclusion 

In conclusion,  we have s t u d i e d  some f e a t u r e s  of t h e  c o r r e c t i o n  
scheme of t h e  AGS Booster  l a t t i ce  a t  BNL. 
sex tupoles  i s  adequate  f o r  t h e  c h r o u a t i c  c o r r e c t i o n s ,  we found t h a t  4 
p a i r s  of sex tupoles  p e r  superper iod  h e l p  (1) t o  reduce t h e  h ighe r  o rde r  
(> 2) c o n t r i b u t i o n  i n  t h e  tune  vs. Ap/p v a r i a t i o n  and ( 2 )  t o  reduce t h e  
tune  VS. b e t a t r o n  a u p l i t u d e  by a f a c t o r  of 100. 

Although two p a i r s  of 

Vhen two p a i r s  of sex tupoles  are used,  t h e  tune  vs. ampli tude 
c o e f f i c i e n t s  depend s t r o n g l y  on t h e  tune  of t h e  machine. This  uay 
suggest  t h a t  4 p a i r s  of s ex tupo les  would be more appropr i a t e  f o r  t h e  
boos te r  sex tupole  co r rec t ions .  

We have a l s o  c a l c u l a t e d  t h e  d e p o l a r i z a t i o n  resonance s t r e n g t h  f o r  
t h e  po la r i zed  proton. With t h e  proposed pro ton  a c c e l e r a t i o n  rate , t h e  
only  resonance a t  yG = 3 f o r  t h e  po la r i zed  pro ton  o p e r a t i o n a l  range of 
t h e  AGS boos te r  g ives  l i t t l e  d e p o l a r i z a t i o n  (6 1%). 
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Figure 1. Booster l a t t i c e  functions.  Tne tune i s  v = u = 4.75. 
Superperiodfcity equals t o  6. Shown i n  t h e  f igure ,  represents  
t he  scxtupole location. 
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Figure 2, Half i n t ege r  
stopband width of the 
Booster as a function of  
tune a t  the  operation 
point ,  vx = v = 4.75. The 
width i s  aboue 0.0062. 
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Figure  3 .  Tune and b e t a t r o n  f u n c t i o n  is  momentum dev ia t ion  is  
shown for (a) one p a i r ,  (b) 2 p a i r s ,  (c) 3 p a i r s  and 
(d)  4 p a i r s  of sex tupoles  per superperiod.  
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Figure 4 ,  The amplitude dependence coefficient of the betatron 
tunes, a a a is shown as a function of betatron 
tune f o r  two family of sextupoles. xx' w' YY 
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Figure 5. Spin depolarization resonance strength f o r  the Booster. 
The only important resonance for the polarized proton 
is YG = 3 resonance. 
injected at YG = 2.15 and extracted at YC, = 3.6. 

The polarized protons w i l l  be 


