THE EDDY CURRENT MULTIPOLES OF THE BOOSTER VACUUM CHAMBER

S. Y. Lee

November 1989

Collider Accelerator Department
 Brookhaven National Laboratory

U.S. Department of Energy
 USDOE Office of Science (SC)

[^0]
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

THE EDDY CURRENT MULTIPOLES OF THE

 BOOSTER VACUUM CHAMBER
AD

BOOSTER TECHNICAL NOTE NO. 153

S. Y. LEE and S. KAHN

NOVEMBER 16, 1989

Booster Project
Alternating Gradient Synchrotron Department BROOKHAVEN NATIONAL LABORATORY

Associated Universities, Inc.
Upton, New York 11973
Booster Project
Technical Note
No. 153

THE EDDY CURRENT MULTIPOLES OF THE BOOSTER VACUUM CHAMBER

S. Y. Lee and S. Kahn

Abstract

The multipole coefficient of the Booster vacuum chamber is calculated based on the Booster conceptual design configuration. We found that the multipole coefficient are not negligible for large B operation.

1. Introduction

The eddy current multipole coefficients of the Booster vacuum chamber has been calculated with PE2D program earlier by Morgan and Kahn ${ }^{1}$. Since the proposed vacuum chamber geometry in AGS Booster is different from that of Morgan and Kahn's calculation, it is worthwhile to recalculate these multipole coefficients.

Recently, an analytic method for calculating the multipole coefficient has been developed ${ }^{2}$, we can calculate the higher multipole reliably. However, we shall also compare the analytic calculation with that of numerical result of PE2D.

2. Multipoles and the Radius of Convergence

The proposed Booster vacuum chamber geometry is shown in Fig. 1. The operational parameter is as follows:

$$
\begin{aligned}
\mathrm{B} / \mathrm{B} & =25 / \mathrm{sec} \\
\sigma^{-1} & =1.28 \mu \Omega \mathrm{~m} \\
\mathrm{~h} & =0.002 \mathrm{~m}
\end{aligned}
$$

where h and σ are thickness of vacuum wall and conductivity of Inconel respectively.
The multipole coefficient can be calculated analytically by integrating the multipole coefficient of reference 2 along the vacuum chamber wall. At the same time, we also calculate these multipole coefficients by using the numerical integrator of PE2D. Table 1 lists the multipole coefficients.

Table 1 Eddy Current Multipole Coefficients

n	$\mathrm{b}_{\mathrm{n}}\left[\mathrm{m}^{-\mathrm{n}}\right]$	
	Analytic	PE2D
0	-6.025×10^{-3}	-6.22×10^{-3}
2	0.5038	0.5175
4	4.8133	7.542
6	-5.9830×10^{3}	-6.00×10^{3}
8	2.1705×10^{6}	$3.20 \times 10^{5} *$
10	-1.2692×10^{9}	
12	3.6064×10^{11}	
14	-2.1826×10^{14}	
16	1.3680×10^{17}	
18	-8.8354×10^{19}	

* To obtain reliable b_{8} in the numerical calculation, the mesh size should be decreased.

The multipole coefficients in Table 1 is much larger than that obtained in Reference 1 mainly due to the different vacuum chamber geometry.

Figure 2 shows the exact $\Delta \mathrm{B}(\mathrm{x}) / \mathrm{B}_{\mathrm{O}}$ vs $\Delta \mathrm{B}_{\mathrm{N}}(\mathrm{x}) / \mathrm{B}_{0}$, obtain from the multipole expansion, i.e.,

$$
\frac{\Delta B_{N}(x)}{B_{o}} \equiv \sum_{n=0}^{N} b_{n} x^{n}
$$

The multipole expansion is thus valid only up to $\mathrm{x}=45 \mathrm{~mm}$. However, off x axis, in the x, y, plane, the field must be rich in harmonics. We expect, therefore, the dynamical aperture would be about 45 mm .

3. Shape Dependence of Multipole Coefficients

The multipole coefficients is a delicate contribution of various part of the currents. In Table 2, we compare the multipole coefficients of the shapes of the Booster polygon, ellipse and rectangle with width $\pm 3.25^{\prime \prime}$ and height $\pm 1.375^{\prime \prime}$. We found that the multipole for the ellipse and rectangle have substantially smaller multipole.

Figure 3 compares the exact field shapes with $\Delta \mathrm{B}_{\mathrm{N}}=10(\mathrm{x}) / \mathrm{Bo}$. We note that the smaller multipole content of the elliptical and rectangular geometry is reflected to have larger radius of convergence.

Table 2 Multipole Coefficients of Different Shape Vacuum Chamber

n	$\mathrm{b}_{\mathrm{n}}\left[\mathrm{m}^{-\mathrm{n}}\right]^{*}$		
	Booster Polygon	Ellipse	Rectangle
0	-6.025×10^{-3}	-4.884×10^{-3}	-7.170×10^{-3}
2	0.5038	0.4849	0.5738
4	4.8133	-16.056	-9.937
6	-5.9830×10^{3}	2.487×10^{2}	-1.836×10^{3}
8	2.171×10^{6}	7.412×10^{4}	-1.563×10^{5}
10	-1.269×10^{9}	2.341×10^{6}	-1.708×10^{6}
12	3.606×10^{11}	8.324×10^{7}	6.323×10^{8}

[^1]
4. Conclusion

The Booster vacuum chamber geometry may create nonlinear field which limits the dynamical aperture in the large $\dot{\mathrm{B}}$ operation mode. The elliptical vacuum chamber seems to be the best choice for fast cycling synchrotrons.

References:

1. G. Morgan and S. Kahn, Booster Tech. Note \#4, January 28, 1986.
2. S. Y. Lee, "Multipole Expansion", Acc. Phys. Tech. Note \#12, AD/AP/TN-12.

Fig. 2

Fig 3

[^0]: Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

[^1]: * All vacuum chamber have the same height and width.

