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During the months of July and August 1989 H-10 magnet 
experiments were set up with the following goals in mind: 

1. Determine the configuration of magnet and circulating 
beam pipe which results in the lowest stray field; 

2. Determine (as above) the most uniform field inside of 
the aperture; 

3. Determine the main field response in and out of the 
aperture tube. 

The setup had 14 configurations as shown in Fig. 1. 

A few photographs were selected to illustrate the actual 
setup, the way it was built in the field, and are shown in Figs. 
2, 3, 4, 5, and 6. 

Figure 2 shows the #l configuration (see Fig. 1) (H-10 magnet 
without the aperture tube and no circulating beam pipe.) 

Figure 3 represents the #3 configuration which is similar to 
#5 and #ll (see Fig. 1) which have the aperture tube mounted in 
and the carbon steel pipe attached for the circulating beam. 

Figure 4 shows the #4 configuration (see Fig. 1) which has 
the aperture tube shorted at both ends to the stainless steel 
circulating beam pipe. 

Figure 5 presents the setup for #9 (see Fig. 1) which is the 
H-10 Mark IV. 

Figure 6 shows the setup for #13 (see Fig. 1). 

A short version of the H-10 was used (26" long) for 
configurations #l, 
#12. 

#2, #3, #4, #5, #5B, #6, #7, #8, #IO, #II, and 
For Configuration #9 a spare H-10 Mark IV magnet was used, 

which was previously mounted in the ring. For Configuration #13, 
a H-10 Mark V magnet was used. To measure the field a Gaussmeter 
(hall probe), model STGI-0402, made by F.W. Bell was used; the 
probe had a linearity of 1% of reading to 10 K Gauss. The power 
supply of the probe had a noise filter on the circuit. To attain 
the repeatability of probe location, a X - Y Table with an 
accuracy of . 001" was used . (See Fig. 7.) The measurements were 
taken at 1" longitudinally inside of lamination stack in six 
different points as per Fig. 8. 



For each configuration, at least twelve measurements were 
taken: Six with power on, and six with power off. Additional 
readings were taken to establish repeatability. A digital 
oscilloscope was used to record the current and the magnetic 
field; the pictures of curves were taken (cca 200) and were 
enlarged and composed. The repeatability was cca 1%. The error 
margin coming from composing the curves, enlarging the scale, and 
other unknown factors was approximated at 4%. 

Results 

The results were summarized in Figs. 9 and 11, which show 
the field measured at the peak, (expressed in Gauss) and the time 
delay between the peak of the current and the peak of the field 
(expressed in microseconds). The location of measuring points 
was shown in Fig. 8. 

The graphs of Fig. 10 show the variation of the main field 
and stray field. The location of measuring points (time delay) 
was the same as above. 

The graphs of Fig. 12 show the variation of the response time 
at measuring points. 

Using the results shown in Figs. 9, 10, 11, and 12, the 
following conclusion can be drawn: 

A. The highest strav field was observed at configurations: 
(for number specification see Fig. 9). 

-6 = with carbon steel circulating beam pipe with 
electric short 
tube: 

-7 = with stainless 
electric short 
tube: 

between the pipe and the aperture 

steel circulating beam pipe with 
between the pipe and the aperture 

- 13 = H-10 Mark V (which is also shorted between the 
aperture and beam pipe). 

B. The lowest stray field happened to be for the following 
configurations: 

- 11 = the carbon steel circulating beam pipe with no 
vertical play between septum and lamination; 



-5 = the carbon steel circulating beam pipe with a 
vertical play of .066" between septum and 
lamination and a . 027 mylar shield between the 
circulating pipe and septum magnet face surface. 

-3 = carbon steel circulating beam pipe with a 
vertical play of . 066" between septum and 
lamination. 

C. The hishest and most uniform main field was attained at 
configurations: 

- 9 = H-10 Mark IV: 

-2 = no circulating beam pipe or aperture tube, 

-5 = carbon steel circulating beam with a vertical 
play of . 066" between septum and lamination; 

-4 = stainless steel circulating beam pipe and .066"' 
play between septum and lamination. 

D. The lowest main field was attained at configurations: 

-6 = carbon steel circulating beam pipe and tube 
inside of aperture with electrical short at both 
ends of circulating beam pipe and tube; 

-7 = stainless steel for circulating beam and the 
short the same as above; 

- 13 = H-10 Mark V. 

E. The fastest and most uniform time response was given by 
the following configurations: 

- 11 = the carbon steel circulating beam pipe with no 
vertical play between the septum and lamination; 

- 10 = the stainless steel circulating beam pipe with no 
vertical play between the septum and lamination; 



Recommendations 

A. 

B. 

C. 

D. 

E. 

1. 

2. 

3. 

4. 

5. 

An electrical break to be mounted between the end flanges and 
the aperture tube (to eliminate the electrical short). 

The septum to be fitted into the lamination with a gap of 
maximum .006". (Using a layer of .003l' kapton on top and 
bottom of copper bar, the septum will present a "locational 
fit" - no actual play.) 

A layer of non-magnetic spacer (mylar or kapton of .027" thk) 
may be used to increase the gap between the septum-magnet 
face surface and the circulating beam pipe, and consequently, 
reduce the stray field. 

The circulating beam pipe to be made of carbon steel. 

One has to further investigate the #ll Configuration (carbon 
steel circulating beam pipe and stainless steel aperture 
tube), to find out the variation of the magnetic field along 
the whole length of magnet. (The hall probe gives results 
just at certain locations as shown above). 

Final Conclusions 

The electrical short brings a variation of the main field 
between 4.25% to 10%. (See configurations #6, #7, and 813). 

The electrical short generates a very high stray field, up 
to 10% of the main field = 1000 Gauss (see configurations #6, 
#7, and #13). 

When the short is not present, the variations of main field 
inside of aperture are on the order of 2.5% and stray field 
is reduced by one order of magnitude. 

The most uniform field inside the aperture tube turns out to 
be for configurations #2, #5, #9, and #ll. 

By using the carbon steel pipe for the circulating beam and 
the stainless steel tube for the aperture, the stray field 
was reduced by 50%; the pumping down time and the outgassing 
phenomenon were scaled down also, but the uniformity of the 
magnetic field inside of aperture was disturbed. The field 
variation for H-10 Mark V was 1.01% (configuration #9) 



versus 2.54% for configuration #ll (see Fig. 3). (See @'El' 
above). As previously stated, the repeatability of these 
measurements is approximately 1%. Therefore, further 
measurement of the aperture field uniformity are probably 
required if variations on this order would be a problem 
either in the H-10, booster injector, or AGS injector septum 
magnets. 
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Fig 2: H-10 Magnet without aperture tube and without 
circulating beam pipe. ( Setup no. 1 ) 



Fig 3: H-10 Magnet with aperture tube mounted and the 
carbon steel pipe attatched for the circulating beam. 
( Setup no. 3, 5, and 11 ) 



Fig 4: E-10 magnet with aperture tube mounted and the stainless 
steel pipe attached for the circulating beam. Electrical 
short at both ends. ( Setup no. 4 ) 



Fig 5: H-10 MARK IV ( Setup no. 9 ) 



Fig 6: a-10 mm v ( Setup no. 13 1 



Fig 7: X-Y-Z table, -001 accuracy. 
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