BEAM LOSS ON EJECTION SEPTUM and BEAM DUMP

A. J. Stevens

June 1989

Collider Accelerator Department
 Brookhaven National Laboratory

U.S. Department of Energy
 USDOE Office of Science (SC)

[^0]
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

BEAM LOSS ON EJECTION SEPTUM and BEAM DUMP

AD
 BOOSTER TECHNICAL NOTE NO. 144

A. J. STEVENS

JUNE 22, 1989

A. J. STEVENS

June 23, 1989

I. Introduction

This note briefly describes calculations made to determine the "performance" of the Booster ejection system and internal dump as a function of characteristics of the beam kickers. The motivation for the calculations is concern about radiation problems. In the case of the ejection septum, 1% loss has been assumed ${ }^{(1)}$ in an area which is difficult to shield (Bldg. 914), so that explicit verification of that assumption was considered desirable. In the case of the dump, the focus of concern was the kicker rise time; a fast kicker is inherently more efficient - more effectively confining radiation products within the dump or region close to the dump - but is more costly. In both cases, the high intensity (unpolarized) proton beam dominates the radiation burden; no attention is given to heavy ions in this note.

II. Method of Calculation

A Monte Carlo tracking program was written to perform the calculations described below. The approximation of a linear machine was always made. In such a machine, the χ coordinate of the i-th particle as a function of longitudinal position s is given by:

$$
\mathrm{X}(\mathrm{i}, \mathrm{~s})=\mathrm{a}_{\mathrm{i}} \cdot \downharpoonleft \beta(\mathrm{~s}) \cdot \cos \left(\psi(\mathrm{s})+\delta_{\mathrm{i}}\right)+\chi(\mathrm{s}) \cdot \Delta \mathrm{p} / \mathrm{p}(\mathrm{i})
$$

"Transport" of a specific orbit from s_{1} to s_{2} is accomplished by a simple change of lattice functions: $\beta\left(\mathrm{s}_{1}\right) \rightarrow \beta\left(\mathrm{s}_{2}\right) ; \psi\left(\mathrm{s}_{1}\right) \rightarrow \psi\left(\mathrm{s}_{2}\right), \chi\left(\mathrm{s}_{1}\right) \rightarrow \chi\left(\mathrm{s}_{2}\right)$ [here ψ is the lattice phase and χ the dispersion function]. A change of direction at a point results in a new orbit, i.e., new values of amplitude a_{i} and phase δ_{i}. The conditions $X_{i}=X_{j}$ and $X^{\prime}{ }_{i}-X^{\prime}{ }_{j}=$ kick give the new amplitude and phase, where $X^{\prime}=\mathrm{dx} / \mathrm{ds}$. In the case of the dump calculations, an orbit impinging on the dump is tracked through the dump material. If it interacts, the orbit is abandoned. If it re-emerges before interacting, new values of $\mathrm{a}_{\mathrm{i}}, \delta_{\mathrm{i}}$ and $\Delta \mathrm{p} / \mathrm{p}$ (i) are calculated and "transport" is resumed.

The key quantities are the population distributions of the amplitude (a) and momentum bite ($\Delta \mathrm{p} / \mathrm{p}$), and the time-function of the kick. Each of these is allowed to vary, to greater or lesser extend, and results given as a function of these variables.

III. Fixed Parameters

The lattice functions were taken from Appendix A of the Booster Project Design Manual (2) which is reproduced here as Fig. 1. All orbits "start" at the position of the dump kicker which is treated as a point in the middle of the drift region downstream of element
number 15 (see Fig. 1) in the " D " superperiod. Other "special" positions - which intrude into the normal vacuum chamber aperture - include the upstream edges of the dump (D superperiod) and ejection septum (F superperiod), which are taken to be 70 cm . downstream of element number 34; the upstream edge of the heavy ion injection septum, taken to be 70 cm . downstream of element number 15 in the " C " superperiod; and the stripping foil, assumed 30 cm . downstream of element 29 in the " C " superperiod.

A number of other positions are known to the program - including the position of maximum beta (horizontal) in each superperiod and a few positions in the region of the dump where an orbit "bump" is assumed to exist. Nominal values for the bump, treated as simple transverse orbit displacements, were supplied by E. Bleser ${ }^{(3)}$. Besides the horizontal beta functions, lattice phase, dispersion and apertures for these positions, the only other data required is the machine tune (4.820) and the alpha function in the region of the dump.

IV. Kicker Function

Since the dump kicker/block are in the same positions as the ejection kicker/septum (except for the superperiod) many results nominally simulating the dump would apply to the septum. However, a significant difference is assumed in the kicker functions. In the case of the septum, a sine wave, synchronized to start at the end of one of the Booster bunches, rises to its peak value in a quarter period of 120 nsec . Thereafter, it oscillates with only a 2% decrease in amplitude. The dump kicker is much sloppier - with a variable quarter period (risetime), but a 20% decrease in amplitude.

V. Amplitude Function

The amplitude defined in Section II is the square root of the emittance. The amplitude is sampled from a 2-D Gaussian whose 1 sigma value is given by SQRT (A)/2.145 at 200 MeV where $\mathrm{A}=50 \times 10^{-6} \mathrm{~m} . \mathrm{rad}$, the design injection admittance of the Booster. This distribution gives 10% of the amplitudes greater than SQRT (A) as stated in the Booster Design Manual. The maximum value of the emittance, or its square root, the amplitude, is determined by some physical aperture. Normally, the assumption is made that strong X-Y coupling results in the dipole vertical opening (full width $=2.65$ inches) serving as the horizontal aperture. (4) This gives, with the approximation that the vertical beta function at a dipole is 90% of the maximum beta, the condition that $A_{\max } \simeq 90.5 \times 10^{-6} \mathrm{~m} . \mathrm{rad}$ (again at 200 MeV). For zero X-Y coupling, presumably an overly conservative assumption, the horizontal aperture limit would be set by the dump block. We assume here that the block has an aperture at $x=4.145 \mathrm{~cm}$ on the low momentum side and that this aperture shadows all others by $\sim 3 \mathrm{~mm}$. This would lead to a maximum injection amplitude corresponding to $A_{\max }=165 \times 10^{-6}$ m.rad. Although most calculations were done for the strong X-Y coupling assumption, results are also given below for the more conservative assumption. In all cases, the square of the amplitude is assumed to scale inversely with momentum.

VI. Momentum Bite

The RF bucket energy width given in the Booster Design Manual would correspond
to a maximum momentum spread of $\Delta \mathrm{p} / \mathrm{p}=0.4 \%$. However, the longitudinal emittance does not fill the bucket so that the momentum spread is restricted to $\Delta \mathrm{p} / \mathrm{p}=0.2 \%(5)$. The orbits are sampled uniformly in the momentum bite which is pessimistic.

VII. Loss on the Ejection Septum

The first step in this calculation was to scale the bump values such that 0.1% of the beam was observed to intercept the dump face. [The symmetry of the ejection septum and dump positions in the lattice allow calculations, though nominally done for the dump, to apply to the ejection septum. Scaling the bump values to "park" the beam near the edge effectively removes the lack of symmetry introduced by the 3 mm . aperture shadowing assumption mentioned in Section V]. The orbits are then kicked with the ejection kicker function described in Section IV and the distribution of x-positions on the entrance face of the dump observed. Since the effective width of the ejection septum is 1.0 cm (4), the amount of orbits within the first 1 cm represent beam lost in the ejection septum.

The results are shown in Figure 2 as a function of $\Delta \mathrm{p} / \mathrm{p}$ and kicker amplitude for the strong $x-y$ coupling assumption. The Booster Design Manual value of a 5 mrd kick gives 1.3% loss at $\Delta \mathrm{p} / \mathrm{p}=0.2 \%$ in excellent agreement with the 1% loss assumption mentioned in the introduction. The value of 5.5 mrd is shown because the kicker strength is not limited by the high intensity protons, but by low intensity Au ions. A slightly higher kick strength, which is available for protons, clearly has a dramatic effect on beam loss. The limit to the kicker strength is likely set by beam loss on the opposite side of the septum magnet aperture. Although this has not been examined in detail, a cursory examination of the magnet aperture (whose dimension is determined largely by sagitta) would appear to allow a few tenths of a milliradium beyond the nominal value of 5 mrd .

If the pessimistic assumption of no $x-y$ coupling is made (Section V), the 1.3% loss $(\Delta \mathrm{p} / \mathrm{p}=0.2 \%)$ at 5.0 mrd increases to 3.6% and the 0.25% at 5.5 mrd increases to 0.60%. In view of the fact that the flat $\Delta \mathrm{p} / \mathrm{p}$ distribution is also pessimistic and that a few tenths of a milliradiun "extra" kick would appear feasible, the 1% loss assumption remains a reasonable expectation.

VII. Loss From the Dump

The differences in the simulation of the dump losses are twofold: (1) the "sloppier" kick function described in Section IV is used, and (2) the term "loss" does not refer to particles which intercept the dump, but to particles which out-scatter from the dump face without interacting. it is important to note that "loss" from the dump is not the same thing as dump "ineffeciency". The latter term is generally used to designate the amount of energy which is not maintained in the dump. This note does not address that question, which would require following the hadron cascade which results from interacting protons. An early consideration of that topic is addressed elsewhere. ${ }^{(6)}$

Figure 3 shows dump loss as a function of kicker rise time assuming the 5 mrd amplitude. Within the statistical accuracy of the calculation, 9000 orbits are tracked for
each calculation - no difference is seen between the two amplitude cut-offs. At the 3 microsec value, 2 orbits $(.02 \%)$ are lost on the ejection septum. For the shorter rise-times considered, the loss is "clean" in the sense that all loss occurs in the first dipole downstream of the dump. The results indicate that a kicker with a rise time close to the orbital period (729 nsec) should suffice.

VIII Conclusions

The calculations described here confirm that a 1% loss of the extracted proton beam on the ejection septum magnet is a reasonable estimate. If the assumption of strong horizontal - vertical coupling is confirmed in practice, significantly less loss may be achievable. The calculations also show that a dump kicker as slow as several revolution periods still serves to confine radiation to the region of the dump assuming the dump face "shadows" all other apertures by 3 mm .

References

1. "Preliminary Safety Analysis Report", AGS Booster Project, 12/1/87.
2. \quad Booster Design Manual - Revision 1", 1/12/89.
3. E. Bleser, private communication.
4. Y. Y. Lee, private communication.
5. S. Y. Lee, private communication.
6. A. J. Stevens, "Conceptual Design of the Booster Beam Dump", AD Booster Tech. Note 117, 4/21/88.

APPENDIX A. BOOSTER LATTICE RLN AND PLOT

[^0]: Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

