Effects of interface resistance between magnet laminations

G. Morgan
April 1986
Collider Accelerator Department
Brookhaven National Laboratory

U.S. Department of Energy
 USDOE Office of Science (SC)

[^0]
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

EFFECT OF INTERFACE RESISTANCE BETVEEN MAGNET LAMINATIONS

Booster Technical Note
No. 29

G. MORGAN

APRIL 30, 1986

HIGH ENERGY FACILITIES
Brookhaven National Laboratory
Upton, N.Y. 11973

G. Morgan

Measurements by G. Cottingham show the interlamination resistance between glued laminations to be $1.2 \mu \Omega$ in one block and $0.45 \mu \Omega$ in another. The lamination cross-section has an area of $0.312 \mathrm{~m}^{2}$. The second block thus has a surface resistance of $\rho_{\mathrm{S}}=(0.45)(.312)=0.142 \mu \Omega-\mathrm{m}^{2}$.

A proper analysis of eddy currents would be a two-dimensional solution to the diffusion equation with anisotropic resistivity. A simple treatment of the surface current density in glued blocks in the case of steady-state, constant \dot{B} is possible. Figure 1 shows a block of n laminations of thickness t and width w; the height (perpendicular to the paper) is h. Consider a thin layer on the surface of thickness α, where α is much less than one. The changing magnetic field \dot{B} is in the direction of h and causes a current in α which is assumed to cross through the lamination thickness in a path of thickness αw, i.e., the current flows in the same fraction of w as it does of t. The fraction of this current which returns inside a single lamination instead of passing through the interface resistance to the next lamination is determined by the relative resistance of the two paths and by the respective loop emfs. The complete set of $2 \mathrm{n}-1$ loop equations (which reduces to $n+1$ because of symmetry) is solved numerically and the case of two laminations is solved analytically.

The equivalent circuit for two laminations has three loops, as shown in Figure 2. Here, $r_{1}=\rho t / \alpha w h, r_{2}=\rho t / \alpha w h$ and $r_{3}=\rho_{\mathrm{S}} / \alpha w h$. The three loop equations are:
1)

$$
2 I_{1}\left(r_{1}+r_{2}\right)-I_{2} r_{1}=\dot{B} \operatorname{tw}(1-\alpha)^{2}
$$

$$
-I_{1} r_{1}+2\left(r_{1}+r_{3}\right) I_{2}-r_{1} I_{3}=\dot{B} t w \alpha^{2}
$$

3)

$$
-\mathrm{r}_{1} \mathrm{I}_{2}+2\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right) \mathrm{I}_{3}=\dot{B} \operatorname{tw}(1-\alpha)^{2}
$$

From 1) and 3), $I_{1}=I_{3}$; the same statement could be made immediately by recourse to symmetry. The solution is, for $\alpha \ll 1$,

$$
\mathrm{I}_{2} / \mathrm{I}_{1}=\rho \mathrm{w}^{2} /\left(\rho \mathrm{w}^{2}+\rho_{\mathrm{S}} \mathrm{t}\right)=1 /(1+\beta)
$$

where $\beta=\rho_{\mathrm{S}} \mathrm{t} /\left(\rho \mathrm{w}^{2}\right)$. For $\rho_{\mathrm{S}}=0.142 \mu \Omega-\mathrm{m}^{2}, \rho=0.14 \mu \Omega-\mathrm{m}, \mathrm{t}=1.5 \mathrm{~mm}$ and $\mathrm{w}=$ 0.133 m (the return leg thickness), $\beta=.086$, i.e., 92.18 of the current crosses the resistive barrier. The pole face is wider: 10 inch. for this value of $w, \beta=.024$ or 97.7% crosses.

For the n - lamination case, after letting α approach zero, a typical lamination equation is

$$
-r_{1} I_{j-1}+2\left(r_{1}+r_{2}\right) I_{j}-r_{1} I_{j+1}=\epsilon
$$

and a typical interface equation is

$$
-r_{1} I_{j-1}+2\left(r_{1}+r_{3}\right) I_{j}-r_{1} I_{j+1}=0
$$

Here, in effect r_{1}, r_{2} and r_{3} are as given above with $\alpha h=1$ and $\epsilon=\dot{B} t w$; I is in amp/meter. By symmetry, $I_{m}=I_{n-m+1}$ so there are $n+1$ equations of which the first is $2\left(r_{1}+r_{2}\right) I_{1}-r_{1} I_{2}=\epsilon$ and the last is either

$$
\begin{aligned}
& -2 r_{1} I_{(n-1) / 2}+2\left(r_{1}+r_{2}\right) I_{(n+1) / 2}=\epsilon \quad(n \text { odd) or } \\
& -2 r_{1} I_{n / 2}+2\left(r_{1}+r_{3}\right) I_{n / 2+1}=0 \text { (n even) }
\end{aligned}
$$

This set of tridiagonal equations is efficiently solved using the Thomas algorithm.

The calculations show that in the backleg, with $w=5^{1 /} / 4$ inch, and $t=$ 1.5 mm (59 mil thick laminations), the surface resistance must be about $2 \times 10^{-5} \Omega \mathrm{~m}^{2}$, or a resistance between laminations of $64 \mu \Omega$ in order to reduce the interface current to $1 / 10$ the intra-lamination current. In the pole laminations, with $w_{4}=10$ inch, and if t is 30 mil , the surface resistance must be about $1 \times 10^{-4} \Omega \mathrm{~m}^{2}$, or an inter-lamination resistance of $0.45 \mathrm{~m} \Omega, 1000$ times the measured value. The computer printout in this latter case is given by Figure 3. In Fig 3, the odd-numbered columns are the lamination loop current density and the even-numbered columns are the interface loop current density. The final number, column 6, row 4 is the interface current density between the $12^{\text {th }}$ and the $13^{\text {th }}$ of the 24 laminations.

可可	SQ8Q	
＋${ }_{\text {山 }}^{\text {¢ }}$	＋${ }_{\text {山 }}^{\text {山 }}$	＋${ }_{\text {W }}^{\text {＋}}$
NNMN	NNNN	NNNN
－iviri	－irai	－iーi

可島	－－
${ }_{\text {＋}}^{+}{ }_{\text {山 }}^{+}$	${ }_{\text {＋}}^{+}$
GN00	ロッnの
arucjo	$\rightarrow \mathrm{mor}$

＋+	QQQ	$\begin{aligned} & \text { GQQQ } \\ & \hline 9+9 \end{aligned}$
，	Noract	N
	．	－

[^0]: Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

