

BNL-105067-2014-TECH

Booster Technical Note No. 20;BNL-105067-2014-IR

Booster Parameter List with 40 Kv RF Voltage

Z. Parsa

March 1986

Collider Accelerator Department Brookhaven National Laboratory

U.S. Department of Energy

USDOE Office of Science (SC)

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

BOOSTER PARAMETER LIST

WITH 40 KV RF VOLTAGE

Eocster Technicci Note Nc. 21

Z. Parsa

MARCH 10, 1986

.

HIGH ENERGY FACILITIES Brockhaven National Laboratory ABSTRACT

THIS NOTE DESCRIBES THE PARAMETER LIST FOR THE AGS-BOOSTER, WITH 40 KV RF VOLTAGE FOR PROTONS; AND THE CHROMATICITY CORRECTION 1,2,4,7 SEXTU-POLE CONFIGURATION. A SCHEMATIC LAYOUT OF THE LATTICE AND ITS SUPERPERIODS ARE ALSO INCLUDED. INTRODUCTION

This note describes the parameter list of the AGS-Booster with the 40 KV RF Voltage for protons; and tunes of 4.82 and 4.83. The chromaticity correction sextupole configuration is 1,2,4,7 and the eddy current sextupole strengths are taken to be 0.12 Tesla per meter square [1]. A schematic layout of the Booster lattice and its superperiods are also included [2-4]. In section II the present values of the Booster parameters are tabulated, [note that, the values listed are for theoretical calculations]. This updates the Booster parameter list given in Reference 5.

References:

1. Calculation of Eddy Currents, BST/TN 4, G. Morgan and S. Kahn, (January 1986).

- 2. Booster Lattice, Booster Tech. Note No. 1, E. Courant and Z. Parsa, (January 15, 1986).
- 3. Chromaticity Correction for the AGS Booster with 1,2,4,7 Sextupole Configuration, BST/ TN 17, E. Courant and Z. Parsa, (March 5, 1986).
- Booster Coordinates, Booster Tech. Note No. 6, Z. Parsa, (January 28, 1986).
- 5. AGS Booster Parameter List, Booster Tech. Note No. 2, Z. Parsa, (January 16, 1986).

ENERGY [MeV]

INJECTION:

PROTONS (INCLUDING POL PROTONS) 200 MeV

HEAVY IONS > 1 MeV/AMU

[POL == POLARIZED]

EJECTION (MAXIMUM)

PROTONS (INCLUDING POL PROTONS) 1 GeV HEAVY IONS P = 5 Q/A GeV/AMU-C

[Q is the charge of the Heavy Ions (whether fully stripped or not) delivered from the Tandem.]

LATTICE

CIRCUMFERENCE	201.78 M (1/4 AGS)		
PERIODICITY	6		
NUMBER OF CELLS	24 FODO [SEPARATE FUNCTION, MISSING DIPOLS]		
LENGTH	8.4075 M		
PHASE ADVANCE/CELL	72.3 , 72.45		
TUNES	QX= 4.82, QY= 4.83		
BETAX MAX/MIN BETAY MAX/MIN	13.865/3.5754 13.644/3.7033		
XP MAX	2.9515 M		
TRANSITION GAMMA	4.8812		

RF SYSTEM

NUMBER OF STATIONS (3 IN TOTAL)

1 FOR PROTONS (INCLUDING POL PROTONS) 2 FOR HEAVY IONS [where POL== POLARIZED]

HARMONIC NUMBER

3 FOR PROTONS (INCLUDING POL PROTONS) 3 FOR HEAVY IONS (1 FOR RHIC)

FREQUENCY RANGE (MHz)

FOR PROTONS (INCLUDING POL PROTONS) 2.5 - 3.9 FOR HEAVY IONS 0.178 - 2.5 (.06 - .84 FOR RHIC)

PEAK RF VOLTAGE [KV]

FOR	PROTON	VS ((INCLUDING	POL	PROTONS)	40
FOR	HEAVY	IONS	5		-	17

ACCELERATION TIME [M-SEC]

FOR	PROTON	1S	(INCLUDING	POL	PROTONS)	50
FOR	HEAVY	IONS	•			500

REPETITION RATE

FOR	PROTONS	10 Hz	(4	PULSES/AGS PULSE)
FOR	POL PROTONS	1 Hz	(1	PULSE/AGS PULSE)
FOR	HEAVY IONS	$1 \mathrm{Hz}$	(1	PULSE/AGS PULSE)

DIPOLES

[DIPOLES ARE CURVED AND WEDGED FOR O ENTRANCE ANGLE]

NUMBER	36	
LENGTH (MAGNETIC)	2.4 M	
GAP	82.55 MM	
GAP VACUUM CHAMBER	66 MM -4	
GOOD FIELD REGION (<	•	

INJECTION FIELD [KG]

FOR PROTONS (INCLUDING POL PROTONS) 1.5633 FOR HEAVY IONS 0.1047 A/Q

EJECTION FIELD [KG]

FOR PROTONS (INCLUDIN FOR HEAVY IONS	NG POL PROTONS) 4.1049 12.129				
LAMINATION THICKNESS	1.5 MM [0.6 MM AROUND ENDS]				
QUADRUPOLES					
NUMBER	48				
LENGTH (MAGNETIC)	0.50 37 5 M				
APERTURE	16.52 CM				
VACUUM CHAMBER AP. [AP.== APERTURE]	15.5 CM				
WITH $GF = 11.999 [KG/M]$, GD	= 12.369 [KG/M]				
INJECTION POLE TIP FIELD [KG]					
FOR PROTONS (INCLUDING POL PF	ROTONS)				
BF = 0.98992 , BI	0 = 1.0204				
FOR HEAVY IONS					
BF = 0.06635 A/Q , BI	0 = 0.0683 A/Q				
EJECTION POLE TIP FIELD [KG]					
FOR PROTONS (INCLUDING POL PR	ROTONS)				
BF = 2.5994 , BD	= 2.6795				
FOR HEAVY IONS					
BF = 7.6805 , BD	= 7.917				
LAMINATION THICKNESS	0.6 MM				
FIELD QUALITY					
SEXTUPOLE HARMONIC 0.0)				
(6 THETA/2 THETA) (SHA	APE POLE TIP TO ELIMINATE)				

ALL OTHER HARMONICS	-4 < 10	
MAX. VACUUM PRESSURE (N2 EQU.)	-11 3 x 10 TOR	R
MAX. INTENSITY (PARTICLES PER	PULSE)	
FOR PROTONS	13 1 - 3 x 10	
FOR POL PROTONS	12 10	
FOR HEAVY IONS	11 2 10 A/Q	
SEXTUPOLES		
LOCATION 1,7 (SF)	, 2,4 (SD)	
NUMBER	24 (12 SF + 12 SD))
LENGTH	10 CM	
APERTURE	16.52 CM	
AT 1 GEV WITH INTEGRATED STREN	GTH [T/M]: 1.76	51
INJECTION POLE TIP FIELD [K		
FOR PROTONS (INCLUDING PO FOR HEAVY IONS EJECTION POLE TIP FIELD [KG	0.03	5761 3065 A/Q
FOR PROTONS (INCLUDING PO FOR HEAVY IONS	L PROTONS) 1.20 3.55	

ACKNOWLEDGEMENT:

We acknowledge the efforts of E. Courant, members of the Booster Design study group, and R. Alvino's assistance.

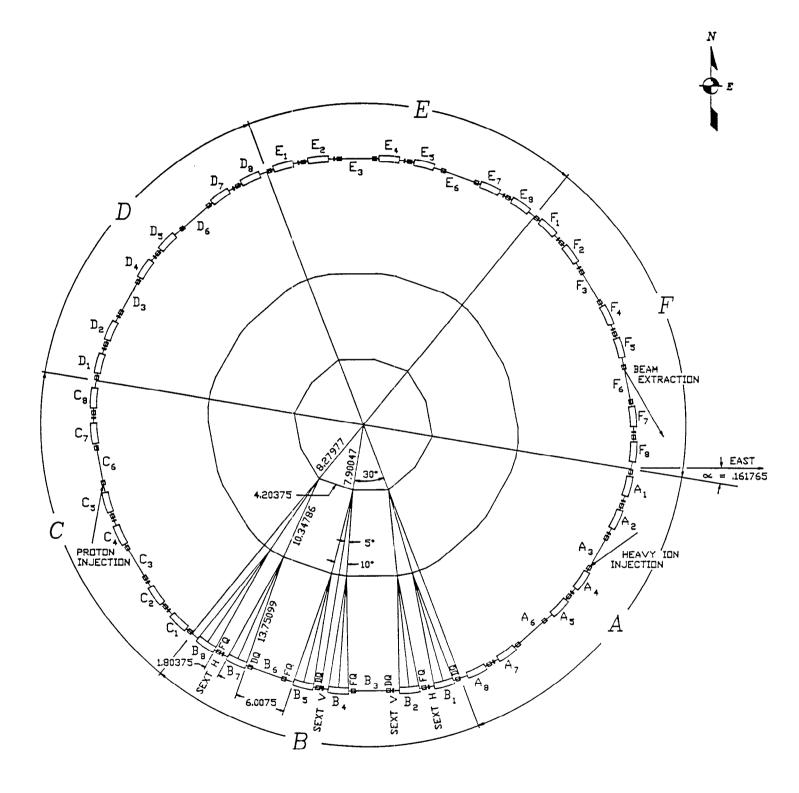


Fig. 1 The Booster Lattice

0____5 METERS NOTE: ALL DIMENSIONS ARE IN METERS