BNL-105057-2014-TECH Booster Technical Note No. 9;BNL-105057-2014-IR # REQUIREMENT FOR THE AGS BOOSTER CORRECTION ELEMENTS Y. Y. Lee February 1986 Collider Accelerator Department Brookhaven National Laboratory **U.S. Department of Energy** USDOE Office of Science (SC) Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes. # **DISCLAIMER** This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. REQUIREMENT FOR THE AGS BOOSTER CORRECTION ELEMENTS Booster Technical Note No. 9 bу Y. Y. Lee 12 February 1986 HIGH ENERGY FACILITIES Brookhaven National Laboratory Upton, N.Y. 11973 #### REQUIREMENT FOR THE AGS BOOSTER CORRECTION ELEMENTS #### Y. Y. LEE This note is intended to give approximate requirements for the correction elements to correct chromaticity, and up to third order resonance stopbands, and to introduce appropriate tune spread for the Landau damping. # CHROMATICITY SEXTUPOLES The chromaticity sextupoles are located at 1, 7 for the horizontal, and location 2, 4 for the vertical in every super periodes. We intend to correct the chromaticity to 1 GeV(B $_{1}$ ~-5.66). Beyond this point, we believe only the partial correction would be sufficient to controll the tune spread. The sextupole created by the eddy current in the vacuume chamber is estimated to be .12 T/m $_{2}$. 1) And the lattice calculation gives the chromaticity generated by those sextupoles are $$\Delta D_{\nu} \cong -8.26 \frac{2.15}{3p} - 1.61 \frac{B_{\mu}^{"} L}{2Bp} - 5.46 \frac{B_{\nu}^{"} L}{2Bp}$$ which should cancel both horizontal and vertical natural chromaticities -4.808 and -5.138 respectivly. At 1 GeV, required the sextupole strengthes are - 1.761 T/m².m for vertical set - 1.123 T/m².m for horizontal set. For example, if we assume 10 cm long magnets, the pole tip field at the radius of 3.25 inches is 1.2 k-gauss for the vertical set and less for the horizontal set. We may be able to incorporate the correction for the random sextupole error in these sets of the sextupoles. ## OCTUPOLE FOR THE LANDAU DAMPING If one assumes damping time of 200 turns, the required tune spread is .005. The tune spread caused by the octupoles are given by 2 $$\Delta V_{y} = \frac{3\beta_{y} KL}{4\pi \beta_{p}} \left(\frac{\gamma_{o}^{2}}{4} - \frac{x_{o}^{2}}{2} \right)$$ $$\Delta V_{H} = \frac{3\beta_{x} KL}{4\pi \beta_{p}} \left(\frac{x_{o}^{2}}{4} - \frac{\gamma_{o}^{2}}{2} \right)$$ where $$k = B'''/6B$$ l = length of the octupole x_0, y_0 = peak betatron amplitude at octpole β_x, β_y =betatron function at octupole The locations where we may place the octupoles have the betatron functions of near F quad. $$\beta_x = 10.7$$ $\beta_y = 4.8$ near D quad. $\beta_x = 4.8$ $\beta_y = 10.7$ If we install 12 each of horizontal and vertical octupoles, the field requirement is 22.7 T/m^3 .m at 1 GeV. which gives pole tip field of approximately 1.3 K-gauss at 3.25" for 10cm long magnet. # CORRECTION DIPOLES The correction dipoles are needed to correct 5 theta harmonics at the injection energy, and to correct vertical 3 theta harmonic polarization resonance at B ρ = 4.2. i) Vertical -- The major sources of the errors are quadrupole survey error of .1mm r.m.s. and dipole roll of .2 mrad. r.m.s. which are; Quad. 119 gauss-cm Dipole 147 gauss-cm The probable in-phase component of them is given by; $[119^2 \times 48 + 147^2 \times 36]^{1/2} \cong 1210 \text{ gauss-cm}$ If we place 42 correction elements (6 locations may be physically impossible to place the elements), half of which are in-phase and requires about 60 gauss-cm which would be trivial to make. ii) Horizontal--We do not have complete analysis of the dipole random errors, however we may refere to similar SPS magnet analysis.²⁾ The random error for the typical dipole is 4×10^{-4} r.m.s. and similar analysis gives horizontal correction requirement of about 1000 gauss-cm (--50 gauss-cm each). ## RANDOM QUADRUPOLE Corrections are needed for the 9th and possiblly 10th harmonic quadrupole error. Again using CERN SPS analysis which gives; low field 7×10^{-4} mid field 3×10^{-4} the total in-phase error is estimated to be at injection 30 gauss at 1 GeV 41 gauss which is translated to be (for 42 correction elements) about 2 gauss. For 10cm long magnet the field is 2 gauss at 10 cm radius. #### SKEW QUADRUPOLE Skew quadrupoles are needed to correct 0 theta coupling resonance. The field roll of the quadrupoles can be as big as .5 mrad. which gives effective in-phase component of about 21 gauss. The required strength of the skew quadrupoles are about one half of the correction quadrupoles. # RANDOM SEXTUPOLES The 14th and possiblly 13th and 15th harmonic should be corrected. The major random sextupole errors are from the eddy current (10^{-2}) and the chromaticity sextupole error (10^{-3}) , which amounts to total in-phase component of 190 gauss/m².m. For forty two 10 cm long magnet, field required is about 1 gauss at 10 cm radius. ## SKEW SEXTUPOLES The major source of the skew sextupole errors are from the roll of the dipoles and it's vacuume chambers, and from the roll of the chromaticity sextupoles. Both of which can be as large as 5×10^{-4} and total in-phase error is about 85 gauss/m².m that is about a half of the correction sextupole requirement. ## REFERENCES - 1) G. Morgan and S kahn Booster Tech note 4 - 2) The SPS Correction Elements Working Group CERN/Lab.II-DI-PA, 1972.