

BNL-105049-2014-TECH

Booster Technical Note No. 1;BNL-105049-2014-IR

The Booster Lattice

E. Courant

January 1986

Collider Accelerator Department Brookhaven National Laboratory

U.S. Department of Energy

USDOE Office of Science (SC)

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

THE BOOSTER LATTICE

ş

Booster Technical Note No. 1

E. Courant and Z. Parsa January 15, 1986

HIGH ENERGY FACILITIES Brookhaven National Laboratory Upton, N.Y. 11973 ABSTRACT

THIS NOTE DESCRIBES THE AGS-BOOSTER LATTICE, ITS SUPERPERIODS AND THEIR COMPONENTS. RESULTS OBTAINED FROM THE SYNCHROTRON DESIGN PROGRAM SYNCH ARE ALSO INCLUDED. INTRODUCTION:

The AGS Booster is designed to be an intermediate synchrotron injector for the AGS, capable of accelerating Protons and Heavy Ions.

Specifications call for the Booster to accelerate protons from 200 MeV, the Linac operating energy to 1 GeV, (with the possibility of an upgrade to 2.5 GeV).

As presently designed, the Booster will have a circumference equal to one quarter that of AGS [ref1]. It will be capable of accelerating protons to 1 GeV at 10 Hz repetition rate and Heavy Ions to magnetic rigidity equal to 16.7 Tesla-Meter at a 1 Hz repetition rate.

The Booster will have a FODO lattice with bending magnets missing in some cells. The dipoles of the proposed lattice have an aperture of 3.25" x 10" and injection field of about 1.6 KG (.7 KG for Heavy Ions). Magnetic field cycle requirements are 4 KG at 10 Hz rate for 1 GeV protons and 12 KG at 1 Hz rate for Heavy Ions. Amplitude (BETAX, BETAY) and Dispersion functions of the lattice obtained from our SYNCH run are shown in Figure 3.

In total, the Booster will have 36 dipoles, each of 2.4 meter magnetic length, and 48 quadrupoles each of 0.50375 meter magnetic length. For maximum tuning versatility the dipoles and the quadrupoles will be independently powered.

The space needed for RF acceleration, injection, ejection and abort system is provided by omitting some bending magnets from the FODO structure focusing without otherwise interupting the periodicity. We have chosen a "seperated function" structure with quadrupoles and zero-gradiant dipoles.

This specific lattice structure consists of six identical superperiods, designated A to F, with each superperiod containing:

two full cells with bending magnets; one empty half cell [bending magnet omitted]; two full cells; one empty half cell; two full cells;

as shown in Figure 2.

There is also a one meter free space on one side of each quadrupole which can be utilized for chromoticity - correcting sextupoles and other correcting and monitoring devices. The choice of sextupole and corrector layouts will be discussed in a subsequent report. I. SUPERPERIOD STRUCTURE

The AGS-Booster lattice has six superperiods, with the structure formula written symbolically for a complete superperiod as

S = D b F b D n F b D b F n D b F b

where the components of the superperiod are the following:

D - Defocusing quadrupoles (0.50375 meters)

F - Focuing quadrupoles (0.50375 meters)

0 - Drift space (1 meter)

o - Drift space (.3 meters)

N - Drift space (2.4 meters), [section with no magnet]

B - Dipole (bending) magnet (2.4 meters)

b - oBO

n - oNO Drift space (3.7 meters)

Booster coordinates and parameter list are given in references 2 and 3. Here we show the geometrical layout, global labeling and the lattice functions.

Figure 1, shows the overall layout of the Booster ring including the locations and directions of proton (p) injection (at C6), Heavy Ion (H.I.) injection (at A3) and beam extraction (at F6). In addition, we have shown the global labeling of the lattice divided into six super- periods (with the clockwise Beam direction) starting from the AF junction which is located 0.161764 Radians South of East with respect to the center of the Booster.

A schematic diagram of the lattice and components of the superperiod are illustrated in Figure 2. There the Focusing Quadrupoles (\uparrow), Defocusing Quadrupoles (\downarrow), Bending Magnets (Dipoles []), and two families of sextupoles (X) SF (Focusing) and SD (Defocusing) are shown. In this scheme we have included four sextupoles for illustration purposes only, (the actual number of sextupoles is still under study).

References:

- The proposed parameters were all obtained from Y.Y. Lee, private Communications; AGS Booster Conceptual Design Report, Vol. I, (April 1984).
- 2. Booster Coordinates, Booster Tech. Note No. 3 Z. Parsa, G.F. Dell (January 1986)
- Booster Parameter List, Booster Tech. Note No.2,
 Z. Parsa, (January 1986).
- 4. Calculation of Eddy Currents, Booster Tech. Note No. 4, G. Morgan and S. Kahn, (January 1986).

SECTION II

In this section we give a summary of the parameters obtained from program SYNCH using:

DUAO: [PARSA1.BOOSTER] SYNBOOST.DAT

as input.

In addition we have included a copy of our result in the Appendix.

Tables I, II, and III shows the Betatron functions and the Amplitude dependence of tunes for linear lattice, Eddy Current sextupoles and correction sextupoles 1,2,4,7 (illustrated in Figure 2) respectively.

We note that; Eddy Current sextupole strengths are taken to be 0.12 Tesla per meter square [4], at 200 MeV Proton injection energy (in all dipoles); and in case III, correction sextupoles are added (to Eddy Current sextupoles) to make the overall chromaticity zero. Alternate sextupole configurations will be discussed in subsequent notes.

TABLE	T
-------	---

1BETATRON FUNCTIONS OF BSP (Linear lattice) CIRCUMFERENCE = 201.7800 M RADIUS = 32.1143 M THETX = 6.28318532 RAD NUX = 4.75000 THETY = 0.00000000 RAD NUY = 4.75000 DNUX/(DP/P) = -4.80824 (DS/S)/(DP/P) = .0434943 DNUY/(DP/P) = -5.13813 TGAM = (4.79495, 0.00000) MAXIMA --- BETX(13) = 13.87963 BETY(36) = 13.67106 MINIMA --- BETX(10) = 3.66905 BETY(23) = 3.80459 XEQ(23) = 2.93871 YEQ(36) = 0.00000 XEQ(1) = .60721 YEQ(36) = 0.00000

TABLE II

1BETATRON FUNCTIONS OF BS2 (No chromaticity sextupoles) CIRCUMFERENCE = 201.7800 M RADIUS = 32.1143 M THETX = 6.28318532 RAD NUX = 4.75000 THETY = 0.00000000 RAD NUY = 4.75000 DNUX/(DP/P) = 4.54397 (DS/S)/(DP/P) = .0434943 DNUY/(DP/P) = -13.39855 TGAM = (4.79495, 0.00000) MAXIMA --- BETX(17) = 13.87963 BETY(52) = 13.67106 MINIMA --- BETX(14) = 3.66905 BETY(35) = 3.80459 XEQ(35) = 2.93871 YEQ(52) = 0.00000 XEQ(1) = .60721 YEQ(52) = 0.00000 AMPLITUDE DEPENDENCE OF TUNES DUE TO SEXTUPOLES NU-X = 4.750000 - .236E+02EX + .112E+02EY NU-Y = 4.750000 + .112E+02EX - .200E+02EY TABLE III

1BETATRON FUNCTIONS OF B4C (Chrom. sext. at 1,2,4,7) CIRCUMFERENCE = 201.7800 MRADIUS = 32.1143 MTHETX =6.28318532 RADNUX =4.75000THETY =0.00000000 RADNUY =4.75000XEQ(37) = 2.93871 YEQ(56) = 0.00000XEQ(1) = .60721 YEQ(56) = 0.00000SEXTUPOLE CORRECTIONS _____ KSF = .35878577E - 01 KSD = -.80131487E + 00_____ AMPLITUDE DEPENDENCE OF TUNES DUE TO SEXTUPOLES NU-X = 4.750000 + .883E+01EX + .651E+00EY NU-Y = 4.750000 + .651E+00EX + .808E+02EY _____

Acknowledgements:

We wish to thank members of the Booster Lattice Design Study Group: A. Antillon, D. Barton, J. Claus, G. Danby, G. Dell, E. Forsyth, R. Gupta, J. Kats, S. Y. Lee, Y. Y. Lee G. Morgan, G. Parzen, E. C. Raka, R. Rau, S. Tepikian, X. Zhao and Ms. K. Brown for our drawings.

Fig. 1 Overall Layout of the Booster

DIRECTION OF BEAM

- = FOCUSING QUADRUPOLE = DEFOCUSING QUADRUPOLE
- = BENDING MAGNET (DIPOLE)
- FIG. 2 a) Schematic Diagram of the Booster and
 - b) Components of the Superperiod

X = SEXTUPULE

*** *** ** ¥¥ *** *** **1 ******* **** *** *** *** *** QFE* 0F* *** REF CEE+ *** ******* ***** ***** *** ** ****** ****** ÷÷ *** A BEND BEND BEND ¥.X *** BEND *** SEND ** EEND +÷ 6 മ QDD QDD QDD ۵D S BSP I 1 I -I B 1 I -٥ I I I 0 I 16.00 4.00 S ¥7 ŦŦ T I I Ε I X BI Ε 1 R ΕI BETAY Q TI BETAX I AI Н ٧V ٧V HH W HH ٧ I٧ ΗH ٧I VV V V нн IV HH ΗH VV ΗН ٧I IV ΗH V V H HH V V н н VV НН **VV12.00 н Н ۷ ۷ ۷ ٧V HXEH ٧ W Н Н V** 3.00 H н ۷ ۷ V VΙ Н ٧ ۷ H XX H Н ΙV Η U Н H Н V н хх н HX XH v Н VI v v ٧ ۷ ۷ н 1 H H VΙ I ۷ Η Н ۷ HXXXH V ۷ ΗX Н ٧ v Н Η v V ۷ Н ۷ 1 I ۷ Б Н ۷ Ŷ НΧ XΗ ۷ Н ΧН ٧ Н ٧ ۷ V ۷ н Ŷ I Ι ٧ Η Н ۷ ΗX Хн ۷ XΗ Н H V XH V ۷ ۷ ۷ v h h 1 I ٧ н Н ٧ h Н НΧ ΗV Ι ٧ ۷ ٧ Н HX V **VXH** HX V V. Н Ī Н Ħ VН HX V VН ΗV 1 V V H Ι H ΗV HV I 2.60 I 8.00 ΗV VXH. HVX ХH HXV ٧H ΗV VН ٧H VH X XH Н۷Х hΫ н ₩¥ ** Н ΗV Χн VH X X ΗV ΗХ Н٧ ЧH I I VH ΗV νн I х х н х VH X I ΗV V H X HV ΗV I V Н XX V VHX ΗV v H Ι H V V. H XHV H ۷ XН ۷ H V Ŷ. нχ ۷ ۷ П I I Н ۷ Н ٧ Н н V Н ΧН ۷ H h Ŷ ۷ нΧ ۷ Η I I H V V Н V V · V ٧ ٧ НΧ Н ۷ Н 1 Ι ٧ Н XH V H н н VXXXXVXXXXX H XX H V ΗI V V Н Н V н ХН XVXXXV I H V V ΗĪ I H ХНХ Н V. ٧ Нh H XHXXXXXXX V ٧X XV V 1.80 VV XX ¥¥ ٧V Нπ ٧V **-4.00XX V V H H НH XΧ ٧V ьH ٧V γý hH ٧V X Н IΗ I XX I XΧ XXXI I XX X IXX 1 I ĩ I 1 I I I 0.60 1 ø ****** ********* 25 38 5 10 15 20 9.00 PATH LENGTH (M) 33.60

FIG. 3 The Amplitude and Dispersion Functions of the Booster Lattice.

÷

POS		S(M)	NUX	NUY	BETAX(M)	BETAY(M) XEQ	(M)	Y	EQ(M)	ZEQ (M)	ALPHAX	ALPHAY	DXEQ	DYEQ
0		0.000	0.0000	0.0000	3.72324	13.6710	6 . 607	21	0.	00000	0.00000	.00813	00000	01414	0.00000
1 9	ao	- 252	.0106	.0030	3.87185	13.1897	1 .614	58	0.1	00000	0.00000	60519	1.88810	.07285	0.00000
2 \$	530	-552	-0224	-0067	4.26672	12.0880	0 .636	44	0.1	00000	0_0000	71105	1.78427	.07285	0.00000
3 E	BEND	2.952	.0836	.0542	9-49416	5.5170	3 1.009	64	0.1	00000	.13790	-1.44489	.95364	23736	0.00000
4 5	5100	3-952	. 0981	.0886	12.70917	3.9558	5 1.247	00	0.	00000	.13790	-1-77012	-60754	-23736	0.00000
5 9	IF	4.204	.1012	.0990	13-16202	3-8045	9 1-284	73	0.1	00000	1 3790	00683	00000	-06136	0.00000
6 9	1F	4.456	.1043	. 1094	12.71589	3.9558	5 1.277	73	0.	00000	.13790	1.75739	60754	11677	0.00000
7 \$	530	4.756	-1082	.1209	11-69040	4.3515	3 1.242	270	0.	COOOO	.1379 0	1_66094	+.71137	11677	0-00000
86	BEND	7.156	.1 570	.1809	5.35955	9.7596	2 1.153	590	0	00000	.34147	.95008	-1.54200	_04296	0.00000
9 S	5100	8-156	-1924	-1949	3-81440	13.1897	1 1.196	85	0.	00000	.34147	.59508	-1.88810	-04296	0.00000
10 0	20	8-408	.2032	.1979	3.66905	13.6710	6 1.229	33	0.	00000	.34147	01112	00000	.21570	0.00000
11 0	סג	8-659	- 2140	-2009	3.82587	13_1897	1 1.306	517	0.	00000	-34147	61894	1.88810	- 39623	0.00000
12 5	5370	12.359	-3006	- 2865	13.35506	3.9558	5 2.772	220	0.1	00000	.34147	-1.95652	.60754	-39623	0.00000
13 0	2F	12.611	-3035	-2969	13.87963	3.8045	9 2.823	517	0.	00000	.34147	10183	00000	-00726	0.00000
14 9	ìF	12.863	.3064	.3073	13.45529	3.9558	5 2.775	i 84	0.	00000	-34147	1.76692	60754	38197	0.00000
15 s	30	13.163	.3101	-3138	12-42271	4.3515	3 2.661	25	0.	00000	.34147	1.67501	71137	38197	0.00000
16 8	BEND	15.563	.3551	.3788	5.91706	9.7596	2 1.917	65	0.	00000	.73596	1.00809	-1.54200	23612	0.00000
17 S	5100	16.563	.3870	.3929	4.24162	13.1897	1 1.681	53	0.	00000	.73596	. 66734	-1.88810	23612	0.00000
18 0	D	10.815	.3967	.3958	4.07363	13.6710	6 1.652	204	0.1	00000	.73596	-00759	.00000	-00123	0_00000
19 9	0	17.067	-4065	-3988	4.23379	13.1897	1 1.682	215	0.1	00000	.73596	65106	1.88810	23862	0.00000
20 s	530	17.367	•4172	-4026	4.65469	12.0880	0 1.753	574	0.1	00000	.73596	75195	1_78427	.23862	0.00000
21 8	BEND	19.767	- 4742	-4501	9.96843	5.5170	3 2.505	78	0_0	00000	1.10251	-1.43958	-95364	-38649	0.00000
22 S	5100	20.757	4881	-4844	13.15579	3.9558	5 2.892	228	0.	00000	1.10251	-1.74779	.60754	-38649	0.00000
23 0) F	21-019	- 4911	.4948	13-58117	3.8045	9 2.938	371	0.	00000	1.10251	-07862	-00000	01886	0-00000
24 3)F	21.271	- 4941	.5052	13-07841	3.9558	5 2.882	283	0.	00000	1.10251	1.89418	60754	42355	0.00000
25 S	370	24.971	.5812	.5908	3-86395	13.1897	1 1.315	570	0_	00000	1.10251	.59622	-1.88810	42355	0.00000
26 0	10	25.223	-5919	.5938	3-71955	13.6710	6 1.232	12	0.1	00000	1.10251	01606	00000	24214	0.00000
27 9	10	25.474	+6025	.5967	3-88052	13.1897	1 1.192	299	0.	00000	1.10251	63068	1.88810	06948	0-00000
28 S	530	25.774	.6142	-6005	4.29135	12.0880	0 1.172	215	0.	00000	1.10251	73874	1.78427	06948	0.00000
29 E	BEND	28.174	- 6746	- 6480	9-69009	5.5170	3 1.197	35	0_1	0000	1.30370	-1_48785	-95364	-09042	0-00000
30 s	5100	29.174	.6888	.6823	12.99744	3.9558	5 1.287	77	0.	0000	1.30370	-1.81950	.60754	-09042	0.00000
31 9)F	29-426	•6918	-6927	13-46504	3.8045	9 1.287	99	0.	00000	1.30370	01535	00000	08863	0.00000
32 9	1F	29-678	- 6948	-7031	13-01254	3.9558	5 1.243	538	0.	0000	1.30370	1.79092	60754	26461	0.00000
33 S	550	29.978	- 6986	.7146	11-96709	4.3515	3 1.164	00	0.	0000	1.30370	1-69392	/1137	26461	0.00000
34 8	BEND	32-378	.7463	.7747	5.48311	9.7596	2 .723	538	0.	00000	1.46271	-98025	-1-54200	10164	0.00000
35 S	5100	33.378	-7810	-7887	3-88023	13.1897	1 "621	75	0.	00000	1.46271	.62263	-1-88810	10164	0.00000
36 9	10	33-630	.7917	•7917	3.72324	13_6710	6	21	0.	0000	1_46271	.00813	00000	01414	0.00000
CIRCU	IMFERENCE RADIUS	=	201-7800 M		THETX = THETY =	6-28318532	RAD	NUX	=	4.75000) DN	UX/(DP/P) :	= ~4.808 = -5.179	24	
(D\$/5	5)/(DP/P)	- •0	434943		TGAM=(4.79495/	0.00000)	101	-	4213000		V1. VVF7 (J	- 20130		
HAYTN	(4	BETY	13) =	13.87043	BETY/	36) =	13.67104		FOC	23) =	2_938	71 ¥50	(36) #	0.0000	n
MININ	A	• 8FTY	10) =	3-66905	RETY	23) =	3_80450		YFOC	1) =	- 607	21 YEA	(36) =	0_0000	ň

BETATRON FUNCTIONS OF BSP (Linear Lattice)