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I. . Introduction-..

This-is a summary:of some notes I made a couple of years.ago in an:-
attempt -to -get an- elementary understanding.of stochastic cooling. Recent:.

results from:the ISR, of which:I am:only vaguely- aware, are ‘not included.. ..

vanader.Meerl,énd<Pa1mer2:have examined ‘the possibility..of damping:
incoherent- beam oscillations by é&lectronic:feedback (stochastic cooling).:
This circumvention: of Liouville's theorem is.achieved by observing .the mean .-
lateral positionrof‘a“sample»N,offtheANficirculatinguparticles. (N/NT;
might: typically be 2110-5}) Approximately-one: quarter of a betatron.wave--
length downstieam; a:momentum kick :is applied:to move.the mean transverse
momentum. toward zero.- After any ''real' coherent-oscillations have been-

damped-the system operates on-the. sensed statistical fluctuations of:the .

mean beam.position of-the-finite number,.N, ofithe particles:-sampled.

In Section II.I review the damping of ‘coherent:oscillations and in-
Section.III the damping.of incoherent .oscillations.. Section IV points out:

some possible:problem-areas which need -further-study.
Notation-similar»touPalmerfsg"is*used.below.

II. Coherent: Damping:.

At some-machine:azimuth ‘the Tean: beam transverse position is sensed and

at--some.angle:0 (in betatron-oscillation phase space) downstream.a momentum..
kick;-proportional.to the. sensed mean beam position; is applied to move (in:
the impulse approximation) the:mean:beam momentum toward. zero. - Transit’

time spreadz;between~sensing;andwcorrectingtstationS«is ignored here as:are:

the technical problems:of getting - the.correction signal to-arrive at the..
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correcting station.at the proper:-time with sufficient=band-pass.

Figure 1 is:a diagram of theé'motion:.of the mean beam position in beta-

tron-phase space;;lUﬂitsrof4y' are.chosen-so that the.orbits are: circles.

arcosy ..

"PFig.. 1

At-point ‘A.a portion:of the beam-is within the sensing :station and:a mean.
lateral position, T cos o, is detected. - At an .angle,. 8 ' =-g "+ B, later-a -
momentum kick, §y’, is given (point B).

For the moment:we ignore noise and.
image.forces.: Then

4

8y’ =-a I. cos -
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(a.is the"gain" of?the‘feEdbackssystem)nandﬂj

% =124 gy’ L 2%6y’ sinp . .

Averaging over allusinitial phases; «;

) 2t
=,2\. a1 -,2
('™ =3= j " (o) do
i o X
we sget
| 2
(7% ‘-_-:1':2 (1 - »__________ﬁ»ZaSJ.;lQV-‘a‘ ) (1)

per ‘pass through the:.system. From:(l) we-see that damping obtains for
Ow.a<2 sing

with optimumgadamping:fOr:a'=fsinve.'
) 1

5
Consider now-the effect of noise:in~the system.. Definew(bg)’has the. -

. . . . . . . .2
sensing noise in:units of .the:RMS .position.of one:particle. Palmer  quotes -

4

‘ 2. % -

the.ISR%value‘(b@)? = 10:+vcmy; i.e.:the RMS:.error .in:sensing the mean posi--

tionuof”IOéxbarticleS‘is‘1 cm. The.expectation:value of the noise.contribu-.
-2 a?(b%)- *

tion:to.xr’ 'is then 5 and.

N

. 2.
=20 -2 /.- 2asinf-a- "~
T = (1 - :
@ = (

. 2 =y S @)
r

and ;damping -obtains for:

2:_Sin.e'
A
NTr™

0 <ac

1f (r-r’)/r.per-pass-throughithe system is small Eq.. (2) can:'be written- .
(we-dropmthesnotation;(')pifor“simplicity)w‘ '
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: 2asine;a2: a2<b%)',
1 - 4 ~ + 2.9 s
2N

[ A

M
1R

and-if a-driving .term due; e.g.,.to image forces- exists"

| 2t 2.2 N
‘E'/ EE (1 - ’2381116”. a + a<b > 4 )\_N) ‘ . (3) ..
b il ’

it
A can-bei.a function of the wvacuum-chamber-parameters, azimuthal extent.of .the-
sénsinggstation,uetc; Ignored here-is any-possible beneficial Landau:.damping . -

dueto- momentum -and.y spread. . From Eq.. (3) damping obtains: for. (sin § =.1) _

a0
L 0B ST b
2-2. s 2-2
N x- N .

III:: Incoherent Damping

We.use van der Meer's method:.of averaging overzdll:combinations of lampli-:
tude-and phase. It is assumed.that .there is sufficient transit time. spread. ™
per-revolution so that:the samples, N, are statistically!independent from-.one .
revolution.-to the:next,. Consider Fig. 1l; at. position B, in phase space,.a:
momentum kick, 8y’, proportional ‘to the y coordinate of the center of gravity -
at'point~A,\ié given:to. the: beam:center of:gravity.. The..y,y’ coordinates of-

the center of gravity at point B.are,
1. 1. .
E:(Zrcosﬁ),,E:§er1nB)g; N

where ‘the summations are over:all-.particles. "After the RiéE'thé’ﬁngépéfQi@aéeg

of -the i-th particle are ([y],-[¥" 1),

' . i 1 ; . 1 s
rriQPSBi]? [;islnsi?-~acose E“{Zrcosﬁ)wr as1n9a§;(2rs1n5>]~ .

We take theisquare-ofithe new amplitude, sum-over i and.divide bY*N.én.Then'u
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" integrating over all possible combinations® of r and § to evaluate (Srcoss)®

. 2 ) . .
and (Trsinp)” we get (cross terms:do not contribute):

| ; 2.
(2;-”,2.< : _2asing-a .
R R ) o

Thew functional similarity to Eq. (1) suggests that .this result-could have:
been: arrived at more.simply. Indeed it appears that we can, for predicting..
average .values, useuthezErquic:theoremqﬂioiobtain Eq. (4) directly from-s..

Eq. (1)..

1f we dncludenoise, set 8= /2, and assume.a is small,

2 2,

o't = (1- &+ '_cz;> |

and:the system damps for -

N 2
0 < afz?—-gf
with an. optimum :gain
= Nog;ﬂ
B = L h
2{b7):

The .optimum damping per.passage through the:system is:

/2."‘_'v 2 - G ’
(1 ‘4<b N >
Or . ) 2.
gleg (1 - == )
A 8(b"7)

giving.
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~ with-a 1/2"folding: time.(in revolutions).of78(b2>702(0);; Note that :this rate .-
canubé*maintained‘only;xif.a0 is-programmed-to -decrease:proportionally:to g(t).

Otherwise*g(t):will”asyhtotigéilyjapproach a(0)/ /2.

IV.: Possible-Problems :

We have made-:a number. of simplifying assumptions, among them:

a) . A smooth distribution. in:phase space. 1If there -is:any."lumpiness"
in the:phase space density due, .e.g., to:'nearness to’ a nonlinear resonance,
and+if 'the sensing and correcting stations have:sufficient.higher:moment .sen-
sitivity, antidamping of beam:envelope.oscillations .could occur. Also, .if:
the distribution in phase space is. non-smooth-the evaluation ofF(Zrcgse>2'éndn;
(erinB}?iis.(tokme) obscure. This also .implies. a non-stationary process,
i.e. a.dependence. on-the absolute origin-in time .so the Ergodic theorem-could:

not:be applied.

b) . Only the mean: square noise.has-been considered. 1In practice b would -
probably be.distributed similarly to the Rayleighi'distribution with -a probabil--

ity density .functiom . .

P(b) = —22= exp (-b2/ (D).
(b~
and one might expect .this to lead.to a long.tailed distribution in:particle. .
position. However.since:the-noise.contribitions to.y’ (and:y) are small“and ..
in:large number,-the-Central Limit theorem would predict that the distribution. -
in y” (and:y) approaches-the Normal:distribution.- If the beam has some ini-.

tial ymax‘(due;ge.g., to shaving) any-noise will populate~theﬁregion;y>yﬁax,

¢) Only damping in two dimensional phase :space has-been.considered:i.:

If there is mixing in.six dimensional.phase space,complications: could result::.

d) .Bandwidth considerations:.have been-ignored. To damp incoherent:os- -
cillationsia large bandwidth:.is required.  Assuming that the:bandwidth (and
noise) of:the system is set byithe RC ofithe.sensing station,. deterioration -
of the signal to noise ratio will start’ at«frequencies~f §f(2ﬂRC)71;"Which
is just the:frequency needed to "instantaneously' sample.the :fluctuations: of
the N particles within-the: station:- Since.C = N (i:e..the-length of the:sta-
tion)ﬂone‘may;reduce~the:bandwidth“at‘theaexpense.ofpdamping_timeubut the:

deterioration of the signal to noise ratio williremain.. ..



V.
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Conclusions.:

For-an "ideal" system-stochastic  cooling seems . to.work, but:technical

difficulties may limitits usefulness. Computer:simulations-of "non-ideal"

systems could be'informative if round-off: errors, etc., can. be kept :small:

enough.
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