
Brookhaven National Laboratory 

U.S. Department of Energy
USDOE Office of Science (SC)

Collider Accelerator Department

October 1988

S. Tepikian

SKEW QUADRUPOLE CORRECTIONS

BNL-105176-2014-TECH

Booster Technical Note No. 132;BNL-105176-2014-IR

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under
Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical
note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for
United States Government purposes.



DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the 
United States Government.  Neither the United States Government nor any 
agency thereof, nor any of their employees, nor any of their contractors, 
subcontractors, or their employees, makes any warranty, express or implied, or 
assumes any legal liability or responsibility for the accuracy, completeness, or any 
third party’s use or the results of such use of any information, apparatus, product, 
or process disclosed, or represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or service 
by trade name, trademark, manufacturer, or otherwise, does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or any agency thereof or its contractors or subcontractors. 
The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof.  



SKEW QUADRUPOLE CORRECTIONS 

AD 

BOOSTER TECHNICAL NOTE 

NO. 132 

S. TEPIKIAN 

OCTOBER 10,1988 

ACCELERATOR DEVELOPMENT DEPARTMENT 

BROOKHAVEN NATIONAL LABORATORY 

UPTON, NEW YORK 11973 



SKEW QUAURUPOLE CORRECTORS 

S. Tepikian 

Abstract 

Two sources of skew quadrupole errors are rotations of normal quadrupole 

fields and vertical displacements of sextupole fields which can include the 

eddy current sextupole fields in the dipole magnets at injection. These 

excite the coupling resonance v - LJ = 0 and the sum resonance u + u = 9 
X Y x Y 

which can be crossed by the space charge tune spread. We correct these 

resonances with 24 skew quadrupole correctors organized in 4 families. We 

find for the worst case the strongest skew quadrupole corrector is 0.36% of 

the main quadrupole strength. Additionally, we find the skew quadrupoles 

impractical in controlling the beam shape by using coupling because of the 

space charge tune spread even at the top energy. 



1. Introduction 

All accelerators contain skew quadrupoles fields due to misalignments. 

These fields are due to rotational errors in normal quadrupoles, vertical 

displacements of normal sextupoles and other sources as well. The skew 

quadrupoles can excite two resonances which may be crossed due to tune 

spread. For the AGS-Booster the resonances are 

v -v =o, v +v =g 
x Y x Y 

as shown in Fig. 1. Additionally, Fig. 1 shows the expected tune spread due 

to space chargel for protons at injection. 

:In the AGS-Booster, we included four sources of skew quadrupole errors: 

(11 0.3mrad rotations in the focusing and defocusing quadrupoles, 

(21 0.3mm vertical displacements of the chromaticity correcting sextupoles, 

(3) 0.3mm vertical displacements of the dipoles with the eddy current 

sextupole fields at injection, 

(41 0.3mm displacements between the central axis of the dipoles and the 

central axis of the eddy current sextupoles, 

where we assumed 3 standard deviations on a uniform distribution of errors. 

These errors excite the resonances stated above and must be corrected to 

reduce any possible beam loss. 

The two resonances given above can be corrected using skew quadrupole 

correctors. There will be four per superperiod, 

and two in the third full cell in the correction 

in Fig. 2. 

two in the first full cell 

trim coil assembly as shown 

The relation between the skew quadrupoles and resonance strengths are 

given in section 2. Section 3 gives the scheme to determine the strengths of 

the correctors. In section 4 we calculate the tune spread at top energy in 

the AGS-Booster in order to see if it is practical to change the shape of the 

beam (i.e. from flat to round or vice versa). Finally, a conclusion is given 

in section 5. 

2. Theory 

The motion of a particle in the beam of an accelerator can be described 

by the following Hamiltonian 

H=$+!$+ k(s) +-&+M(s) xy-K(s); 
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where x and y are the particles position with respect to the equilibrium, p 

and p are the conjugate momenta, 
Y 

K(s) is the quadrupole strength, M(s) is thl 

skew quadrupole strength, p(s) is the radius of curvature and s is the 

independent variable (i.e. the time variable). We have assumed the particle 

is at the equilibrium momentum. 

The resonance strengths can be found by applying two canonical 

transformations to the Hamiltonian H and then expanding the potential term in 

a fourier series. The first canonical transformation (which transforms the 

Hamiltonian to action-angle2 variables1 is given by the generating function 

shown below: 

2 
X 

F(x,~,~&,sl = - 
2PX(S) 

where I) 
X 

and @ 
Y 

are the new angle variables, primes denote d/ds and the 

functions /3x(s) and py(sl are the solutions of the following equations 

PxWB~’ (s) wp.) I2 

2 4 

Py(slP;'(sl U3;(s11Z 

2 4 
- K(s) /3;(s) = 1. 

The actions, J and J are related to x and y as follows 
X Y' 

x = d2Jxpx(s) cos @ 
X 

y = d2J /3 (s) cos @. 
YY Y 

Note, the emittance of the beam is related to the action by 25 = E /n and 
X X 

25 = E /n. 
Y Y 

If there are no skew quadrupoles present (i.e. M(s) = 01 then the 

emittances (and the actions1 are invariants of the motion3. 

IJsing the generating function, F, the new Hamiltonian becomes 

J J 
Y H1=----X-+- 

Bx(sl By(s) 

+ M(s) \/2JxBx(s1 1/2JySy(s1 cos ex cos rcI 
Y 

The next transformation will eliminate the time dependence in the first 
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two t.erms in the Hamiltonian H 
1' 

This transformation is given by the 

following generating function 

G(Ix,Iy,Jl&,s) = I)jx - r.cx(s)l + Iyh$ - k$(S)] 

where I and I are the new action variables and 
x Y 

I 
s 

cly(s) = - - 
2n 

a'(':, c”ys 

cly 
and 

with C being the circumference of the accelerator. Note, px(s) and pY(s) are 

periodic 

lattice. 

The 

functions of s with a period of C/P where P is the periodicity of the 

new action angle variables are related to the old as follows 

I =J 
x x 

I =J 
Y Y 

sx = vJx - Px(S) 

EY = *y - Py(S) 

where 5 

Th: 

and < are the new angle variables. 
Y 

transformation of Hamiltonian H1 with the generating function G leads 

1 
V =_ - 

x 2K 
I 

Rx% ’ 
0 

C 
1 

V =_ - 
Y 2n I Pk oy 

to the following Hamiltonian 
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m 

I$ = $ [I 
-LZnns/C 

+ VYIY + 2[21x1"' [21yl 1'21m e 

n=-m 

(An e 
iEx-Eyl 

+B e 
a Ex+Ey ) 

1 
n 11 

where 

AZ; 
n I 

C 
i[p (tl-p (t1+2nnt/Cl 

M(t)p:/2(tlp1'2(tle x ' dt 
Y 

0 

C 

B=; 
i[p (t1+~y(t)+27rnt/C1 

M(tl/3:/2(t)/3:'2(t1e x dt 
n 

0 

The terms A and B 
n n 

give the resonance strengths for the following 

resonances 

u -u =n, v +u =n 
X Y X Y 

respectively. In the next section we will minimize the resonance strengths 

for the resonances given in the introduction. 

3. Strategy 

The AGS-Booster consist of six superperiods and each superperiod contains 

eight correction trim coil assemblies. Four of these assemblies will contain 

the skew quadrupole correctors. Using these trim coils we want to generate a 

resonances that cancels those resonances excited by the skew quadrupole 

errors. Thus, in an ideal accelerator with no skew quadrupole errors, we want 

to find the strengths of the skew quadrupole correctors to excite any given 

imperfection resonance strength. 

We are concerned with the two resonances listed in the introduction. The 

corresponding strengths are Ao and Bs. Since these numbers are complex, there 

are four conditions to be satisfied. The integrals in the previous section 

relating the skew quadrupole strengths to the resonance strengths can be 

converted to sums by using the thin lens approximation as 



6 4 

A=& 

11 

MpqP~Ctpg)P:/2(t le 
i1j.i CtpqI-p (tpq)+27rntpq/C1 

x Y 

n Pq 

p=l q=l 

6 4 

9~; MpqP:'2(tpq)p:/2(t Ie 
i[cc (t 

x pq 
)+~y(tpq)+27rntpq/Cl 

n Pq 

p=l q=l 

where the outer sum is over the superperiods, M 
Pq 

are the integrated skew 

quadrupole strength of the correctors and t are the positions of the center 
Pq 

of the correctors. 

Due to the periodicity of the 6 and p functions the above sums can be 

simplified. First, we define 

then 

t =t 
q (p=l)q 

t = t + (p-l)C/6 
Pq q 

for p = 1, 2, 3, = . . . 6 and q 1, 2, 3 and 4. Defining the coefficients f 
P 

so that 

M =fM 
Pq Pq 

defines four families of skew quadrupole correctors. The sums can now be 

written as 

Bn = & [i fp~~~-~~~“] f MqP:IZ(tq)B:12(tq)ei[Px(tq)+lly(tq)+2Kntq/cl 
q=l 

Choosing f = cos[nn(p-1)/31 for n = 0 and for n=9 leads to the 
P 

greatest contribution to each of the two resonances separately. Furthermore, 

the two resonances of f for n = 0 and for n = 9 are orthogonal (i.e. f 
P P 
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of n = 0 doesn't contribute to Bs and n=9 doesn't contribute to Aol. 

Now we can solve for the unknowns M 
q 

for a given choice of Ao and Bs. 

Due to the orthogonality between n=O and 

(from two independent sets of Mql with four 

unknowns are handeled by the following scheme: 

n = 9 we have eight unknowns 

conditions. These additional 

M1 = Ms and M2 = M4 

A listing of a program that uses the above strategy for solving for the 

strengths of the skew quadrupole correctors is given in the appendix. Using 

this program we have calculated the strengths for various different random 

seeds for the skew quadrupole errors given in the introduction. We have 

assumed the eddy current sextupole of B" = .24 T/m2 in the dipoles? In each 

case we used a uniform distribution of errors. The table below shows the 

random number seed versus the maximum strength of the corrector 

SEED 
INTEGHATEDISTHENGTH % OF MAIN 

m QUAD. STRENGTH 

51351 0.0001717 0.31% 
8795 0.0001716 0.31% 

85003 0.0001210 0.22% 
6221 0.0001239 0.22% 

900863 0.0001991 0.36% 
5819 0.0001350 0.24% 

I 

where we assumed a trim coil 10 cm long. 

4. Coupling 

The coupling resonance uX-uY=O that is excited by the skew quadrupoles 

can couple the transverse emittances (i.e. cx+cY=constantl. Thus, if cX 

increased then c must decrease and vice versa. 
Y 

Can this phenomena be used 

transform the beam from a flat to a round or vice versa in the AGS-Booster? 

To investigate this consider the tune split of the AGS-Booster which 

AU=V -u =O.Ol. 
Y x 

With this tune split, the coupling will cause the beam 

is 

to 

is 

to 

oscillate from flat to round to flat etc. about every 25 revolutions. This 

number may vary due to nonlinearities that can effect the tunes and thus, the 

tune split. 

Different particles in the beam may have different tune splits due to 

tune spread. In order for all the particles to be coupled coherently, then 

we get the following requirement on the tune spread 
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6V 
X’ 

6v << 0.005. 
Y 

The major cause of tune spread in the ACS-Booster is due to space charge 

effects. The space charge tune spread is scaled with beam energy as follows 

Lr2P avsp = constant. 

Parzen' has calculated the space charge tune spread for protons at 200Mev in 

the AGS-Booster giving 

6v = -.52, 6v = -.58 
X Y 

From the scaling of space charge tune spread we find 

6v = -.070, 6v = -.077 
X Y 

for protons at 1.5Gev. 

Hence, all the particles will not coherently transform from a flat beam 

to a round beam at the top energy of the AGS-Booster. 

5. Conclusion 

A particle in the AGS-Booster can cross the coupling resonance vx-vy=O 

and the sum resonance v +v =9, 
x Y 

which is excited by the skew quadrupole errors, 

due to the large space charge tune spread at injection. We have formulated a 

strategy for correcting these resonances using half of the correction trim 

coil assemblies available in the Booster for skew quadrupole correctors. 

Using the arrangement of the correctors described in section 3, we have been 

able to correct the two resonances. For the errors given in the introduction, 

the largest skew quadrupole corrector is found to be 0.36% of the main 

quadrupole's field strength. 

Additionally, the four errors listed in the introduction give about 

equal contribution to the resonance strengths and thus, to the maximum 

strength of the corrector required. With this, we can easily scale the 

results if the actual errors are different than those assumed in section 1. 



Below is a listing of the program that was used to calculate the skew 

quadrupole corrector strengths. The program is written in FORTRAN 77 and was 

tested on the VAX. The input consists of two files. The first file includes 

the number of correctors per superperiod; the number of superperiods; 

position, betatron functions and the phase advance for each corrector in the 

first superperiod; the betatron tunes and the circumference. The second file 

consist of the real and imaginary parts of Ao and Bs. After the program has 

run the array skquad(*) contains the strengths of all the correctors. 

program correctors 
C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

This program calculates the coefficients for each correcting 
skew quadrupole to determine the resonance strengths the correctors 
drive. 

We use the thin lens approximation. 

implicit real*8 (a-h,o-z) 

bx = the beta function (x direction) 

by = the beta function (y direction) 
cct = the trim coil package contribution to resonance 
cfac = a transformation factor for the resonance strength 
circ = the machine circumference 
cstr = the real part of the resonance strength to be 

excited 
csup = the real part of the superperiod contribution 

to the resonance 
maxsize = maximum size for skew quadrupoles per superperiod 
mskq = maximum size of skew quadrupoles array 
mux = the phase advance (x direction, 2*pi included) 

muy = the phase advance (y direction, 2*pi included) 
net = the number of trim coil packages per superperiod 
nres = the number of resonances 
nsup = the number of superperiods 
nsupmax = maximum superperiod 
set = the trim coil package contribution to resonance 
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C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

sfac = 
snorm = 

sstr = 

ssup = 

sum1 = 
skquad = 
vx = 

vY = 

wx = 

WY = 
wp = 

a transformation factor for the resonance strength 
the coefficient for a given skew quadrupole from one 
superperiod to the next 
the imaginary part of the resonance strength to be 
excited 
the imaginary part of the superperiod contribution 
to the resonance 
position of the center of the trim coil package 
skew quadrupole array 
tune in x direction 
tune in y direction 
! 
! a resonance => wx*vx + wy*vy = wp 

parameter (maxsize=lOO, nres=2, nsupmax=60, mskq=maxsize*nsupmax, 

'1 pi=3.141592653589793dO, twopi=6.2831853071795865dO) 

real*8 mux,muy 
complex*16 ccoef 
character smtrm*4,stype*4 
dimension suml(maxsize),bx(maxsize),mux(maxsize),by(maxsize~, 

'1 muy(maxsize),wx(nres),wy(nres),wp(nres),csuP(nres, 

2 nsupmax),ssup(nres,nsupmax),cct(nres,maxsize),sct(nres, 

:3 maxsize),cstr(nres),sstr(nres),snorm(nres,nsuPmax), 

4 sfac(nres),skquad(mskq),b(nres),a(nres,nres),cfac(nres), 

5 indx(nres) 
c ---.-- the resonances 

data wx/ l.dO, l.dO/, 
'1 wy/ l.dO,-l.dO/, 
2 wp/ 9.d0, O.dO/, 
:3 skquad/mskq*O.dO/ 

c ---.-- reading in the lattice parameters 

read(4,lO) nct,nsup 
10 format(2i8) 

do 20 i=l,nct 
read(4,30) suml(i),bx(i),zmux,by(i),zmuy 
mux(i)=twopi*zmux 
muy(i)=twopi*zmuy 

30 format(5e16.9) 
20 continue 

read(4,30) circ,vx,vy 
c ----- reading the resonance strengths 

read(5,*) (cstr(i),sstr(i),i=l,nres) 
c ---.-- contribution to each resonance by superperiod 

part=twopi/dfloat(nsup) 
write(6,*) 
do 40 i=l,nres 

do 40 j=l,nsup 
arg=wp(i)*part*dfloat(j-1) 
csup(i,j)=dcos(arg) 
ssup(i,j)=dsin(arg) 

40 continue 
do 50 j=l,nsup 

write(6,60) j,(csup(i,j),SSUP(i,j),i=l,nres) 

60 format(lx,i4,8f9.6) 
50 continue 

c ---.-- contribution to each resonance from within each superperiod 

conv=twopi/circ 
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do 70 i=l,nres 
do 70 j=l,nct 

ccoef=dcmplx(O.dO,dsqrt(bx(j)*by(j))/(4.dO*pi))* 
1 cdexp(dcmplx(O.dO,wx(i)*(mux(j)-conv*vx*suml(j))+ 
2 wy(i)*(muy(j)-conv*vy*suml(j))+wp(i)*conv*suml(j))) 

cct(i,jI=dreal(ccoef) 
sct(i,j)=dimag(ccoef) 

70 continue 
write(6,*) 
do 80 j=l,nct 

write(6,60) j,(cct(i,j),sct(i,j),i=l,nres) 
80 continue 

C There are four skew quadrupoles per superperiod. To correct 
C two resonances that are orthogonal, we have 4 conditions with 
C eight unknowns. We set the first skew quadurupole equal to the 
C third and the second equal to the fourth. The 4 unknowns are 
C then solved by two consecutive 2 x 2 sets of linear equations. 

c ---.-- the resonance strengths are converted to deal with each superiod 
c ---.-- separately 

do 90 i=l,nres 
cfac(i)=O.dO 
sfac(i)=O.dO 
do 90 j=l,nsup 

snorm(i,j)=csup(i,jI 
cfac(i)=cfac(iI+snorm(i,j)*csup(i,j) 
sfac(i)=sfac(i)+snorm(i,j)*ssup(i,j) 

90 continue 
c ---.-- the linear equation to solve 

c ---.-- the p=9 resonances 
denl=cfac(l)**2+sfac(1)**2 
b(l)=(cfac(l)*cstr(l)+sfac(l)*sstr(l)~/denl 
b(2)=(cfac(l)*sstr(l)_sfacO*cstr(l~~/denl 

c ####### 
a(l,l)=cct(l,l)+cct(1,3) 
a(2,1)=sct(l,l)+sct(l,31 
a(l,2)=cct(l,2)+cct(1,4) 
a(2,2)=sct(1,2)+sct(l,41 

c ####### 
call ludcmp(a,2,nres,indx,dsgn) 
call lubksb(a,2,nres,indx,b) 
do 100 i=l,nsup 

karg=4*(i-l)+l 
skquad(karg)=snorm(l,i)*b(l) 
skquad(karg+l)=snorm(l,i)*b(2) 
skquad(karg+2)=snorm(l,i)*b(l) 
skquad(karg+3)=snorm(l,i)*b(2) 

100 continue 
c ----- for p=O resonances 

den2=cfac(21S*2+sfac(2)**2 
b(l)=(cfac(2)*cstr(2)+sfac(2I*sstro)/den2 
b(2)=(cfac(2)*sstr(2)_sfac(2)*cstr(2))/den2 

c ####### 
a(l,l)=cct(2,l)+cct(2,3) 
a(2,1)=sct(2,l)+sct(2,3) 
a(1,2)=cct(2,2)+cct(2,4) 
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a(2,2)=sct(2,2)+sct(2,4) 
c ####### 

call ludcmp(a,2,nres,indx,dsgn) 
call lubksb(a,2,nres,indx,b) 
do 110 i=l,nsup 

karg=4*(i-l)+l 
skquad(karg)=skquad(karg)+snorm(2,i)*b(l) 
skquad(karg+l)=skquad(karg+l)+snorm(2,i)*b(2) 
skquad(karg+2)=skquad(karg+2)+snorm(2,i)*b(l) 
skquad(karg+3)=skquad(karg+3)+snorm(2,i)*b(2) 

110 continue 
c ---'-- printing out the value of the skew quadrupoles 

do 120 i=l,nct*nsup 
write(7,130) skquad(i1 

130 format(4x,fl9.15) 
120 continue 

end 
c***************************************~~~~~~~~~~~~~~~~*##~~~~~~~~~ 

C LU Decomposition of a linear system of equations 
c***************************************~~~~~~~~~~~#~~~~~~~~~~~~#~~~ 

C 

C 

C 

C 

11 

12 

13 

14 

15 

W. H. Press, et al; 'Numerical Recipes',(Cambridge University 
Press, 1986) 

SUBROUTINE LUDCMP(A,N,NP,INDX,D) 
implicit real*8 (a-h,o-z) 
PARAMETER (NMAX=lOO,TINY=l.Od-20) 
DIMENSION A(NP,NP),INDX(N),VV(NMAX) 
D=l.dO 
DO 12 I=l,N 

AAMAX=O.dO 
DO 11 J=l,N 

IF (dABS(A(I,J)).CT.AAMAX) AAMAX=dABS(A(I,J)) 
CONTINUE 
IF (AAMAX.EQ.O.dO) PAUSE 'Singular matrix.' 
VV(I)=l.dO/AAMAX 

CONTINUE 
DO 19 J=l,N 

IF (J.GT.l) THEN 
DO 14 I=l,J-1 

SUM=A(I,J) 
IF (I.GT.lITHEN 
DO 13 K=l,I-1 

SUM=SUM-A(I,K)*A(K,J) 
CONTINUE 
A(I,J)=SUM 

ENDIF 
CONTINUE 

ENDIF 
AAMAX=O.dO 
DO 16 I=J,N 

SUM=A(I,J) 
IF (J.GT.l)THEN 
DO 15 K=l,J-1 

SUM=SUM-A(I,K)*A(K,J) 
CONTINUE 
A(I,J)=SUM 

ENDIF 
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DUM=VV(I)*dABS(SUM) 
IF (DUM.GE.AAMAX) THEN 
IMAX=I 
AAMAX=DUM 

ENDIF 
16 CONTINUE 

IF (J.NE.IMAX)THEN 
DO 17 K=l,N 
DUM=A(IMAX,K) 
A(IMAX,K)=A(J,K) 
A(J,K)=DUM 

17 CONTINUE 
D=-D 
VV(IMAX)=VV(J) 

ENDIF 
INDX(J)=IMAX 
IF(J.NE.N)THEN 
IF(A(J,J).EQ.O.)A(J,J)=TINY 
DUM=l.dO/A(J,J) 
DO 18 I=J+l,N 
A(I,J)=A(I,J)*DUM 

18 CONTINUE 
ENDIF 

19 CONTINUE 
IF(A(N,N).EQ.O.dO)A(N,N)=TINY 
RETURN 
END 

C----_-------___________--_________---- 
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12 

13 

14 

SUBROUTINE LUBKSB(A,N,NP,INDX,B) 
implicit real*8 (a-h,o-z) 
DIMENSION A(NP,NP),INDX(N),B(N) 
II=0 
DO 12 I=l,N 
LL=INDX(I) 
SUM=B(LL) 
B(LL)=B(I) 
IF (II.NE.O)THEN 
DO 11 J=II,I-1 
SUM=SUM-A(I,J)*B(J) 

CONTINUE 
ELSE IF (SUM.NE.0.) THEN 

II=1 
ENDIF 
B(I)=SUM 

CONTINUE 
DO 14 I=N,l,-1 
SUM=B(I) 
IF(I.LT.N)THEN 
DO 13 J=I+l,N 
SUM=SUM-A(I,J)*B(J) 

CONTINUE 
ENDIF 
B(I)=SWA(I,I) 

CONTINUE 
RETURN 
END 

.------------_--------------- 
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