RANDOM SEXTUPOLE CORRECTION

S. Tepikian

August 1988

Collider Accelerator Department

Brookhaven National Laboratory

U.S. Department of Energy
 USDOE Office of Science (SC)

[^0]
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

AD
Booster Technical Note
No. 125

S. TEPIKIAM
 AUGUST 5, 1988

ACCELERATOR DEVELOPMENT DEPARTMENT

Brookhaven National Laboratory
Upton, N.Y. 11973

RANDOM SEXTUPOLE CORRECTION

S. Tepikian

Abstract

The AGS-Booster has a large tune spread and strong random eddy current sextupoles at injection. As a result, particles in the beam may cross four strong imperfection resonances. We correct these four resonances using trim coils in the chromaticity sextupoles. A scheme is presented for determining the strength of these correctors. For random sextupole errors of 10% of the systematic eddy current sextupoles in the dipoles and . 1% errors in the chromaticity sextupoles, we find that the maximum pole tip field for these trim coils is about 35 Gauss.

1. Introduction

The AGS-Booster is designed to be a fast cycling machine to increase the space charge limit of the AGS. Hence, at injection, the dipoles contain large eddy current sextupoles due to the fast cycling ${ }^{1}$ and the space charge tune spread is very large. The random component of the eddy current sextupoles can excite imperfection resonances that may be crossed by the space charge tune spread.

The imperfection resonances that are important can be seen from the tune diagram in Fig. 1. Only the resonances excited by sextupoles are shown in this figure. The dotted line shows the possible range of tune spread due to the space charge of the beam. The four imperfection resonances that can be crossed are

$$
\begin{gathered}
3 v_{x}=14 \\
v_{x}+2 v_{y}=14 \\
3 v_{x}=13 \\
v_{x}+2 v_{y}=13
\end{gathered}
$$

During machine operation, it may be found that some of the other nearby resonances are also important (such as $\nu_{x}-2 \nu_{y}=-4$, etc.). These can be included but with some additional expense: (1) stronger correctors and (2) a larger control program to determine the corrector strengths may be required.

The imperfection resonances listed above can be canceled by including sextupole correctors in the chromaticity sextupoles. These imperfection resonances are assumed to be excited by random sextupoles. There are two sources of random sextupoles considered: (1) from eddy currents in the dipoles at injection and (2) from errors in the chromaticity sextupoles.

We start with the theory given in the next section. Section 3 gives the strategy we used in finding the corrector strengths. Finally, a conclusion is given in section 4 .

2. Theory

The motion of a particle in the beam of an accelerator can be described by the following Hamiltonian

$$
H=\frac{p_{x}^{2}}{2}+\frac{p_{y}^{2}}{2}+\left[K(s)+\frac{1}{\rho^{2}(s)}\right] \frac{x^{2}}{2}-K(s) \frac{y^{2}}{2}+\frac{S(s)}{6}\left(x^{3}-3 x y^{2}\right)
$$

where x and y are the particles position with respect to the equilibrium, p_{x} and p_{y} are the conjugate momenta, $K(s)$ is the quadrupole strength, $S(s)$ is the sextupole strength, $\rho(s)$ is the radius of curvature and s is the independent
variable (i.e. the time variable). We have assumed the particle is at the equilibrium momentum.

The resonance strengths can be found by applying two canonical transformations to the Hamiltonian H and then expanding the potential term in a fourier series. The first canonical transformation (which transforms the Hamiltonian to action-angle variables) is given by the generating function shown below:

$$
F\left(x, y, \psi_{x}, \psi_{y}, s\right)=-\frac{x^{2}}{2 \beta_{x}(s)}\left[\tan \psi_{x}-\frac{\beta_{x}^{\prime}(s)}{2}\right]-\frac{y^{2}}{2 \beta_{y}(s)}\left[\tan \psi_{y}-\frac{\beta_{y}^{\prime}(s)}{2}\right]
$$

where ψ_{x} and ψ_{y} are the new angle variables, primes denote $d / d s$ and the functions $\beta_{x}(s)$ and $\beta_{y}(s)$ are the solutions of the following equations

$$
\begin{gathered}
\frac{\beta_{x}(s) \beta_{x}^{\prime \prime}(s)}{2}-\frac{\left(\beta_{x}^{\prime}(s)\right)^{2}}{4}+\left[K(s)+\frac{1}{\rho^{2}(s)}\right] \beta_{x}^{2}(s)=1 \\
\frac{\beta_{y}(s) \beta_{y}^{\prime \prime}(s)}{2}-\frac{\left(\beta_{y}^{\prime}(s)\right)^{2}}{4}-K(s) \beta_{y}^{2}(s)=1
\end{gathered}
$$

The actions, J_{x} and J_{y}, are related to x and y as follows

$$
\begin{aligned}
& x=\sqrt{2 J_{x} \beta_{x}(s)} \cos \psi_{x} \\
& y=\sqrt{2 J_{y} \beta_{y}(s)} \cos \psi_{y}
\end{aligned}
$$

Note, the emittance of the beam is related to the action by $2 J_{x}=E_{x} / \pi$ and $2 J_{y}=E_{y} / \pi$. If there are no sextupoles present (i.e. $S(s)=0$) then the emittances (and the actions) are invariants of the motion ${ }^{3}$.

Using the generating function, F, the new Hamiltonian becomes

$$
H_{1}=\frac{J_{x}}{\beta_{x}(s)}+\frac{J_{y}}{\beta_{y}(s)}+\frac{S(s)}{3} \sqrt{2 J_{x} \beta_{x}(s)}\left(J_{x} \beta_{x}(s) \cos ^{2} \psi_{x}-3 J_{y} \beta_{y}(s) \cos ^{2} \psi_{y}\right) \cos \psi_{x}
$$

The next transformation will eliminate the time dependence in the first two terms in the Hamiltonian H_{1}. This transformation is given by the following generating function

$$
G\left(I_{x}, I_{y}, \psi_{x}, \psi_{y}, s\right)=I_{x}\left[\psi_{x}-\mu_{x}(s)\right]+I_{y}\left[\psi_{y}-\mu_{y}(s)\right]
$$

where I_{x} and I_{y} are the new action variables and

$$
\begin{aligned}
& \mu_{x}(s)=\int_{0}^{s} \frac{d t}{\beta_{x}(t)}-\frac{2 \pi}{C} v_{x} s \\
& \mu_{y}(s)=\int_{0}^{s} \frac{d t}{\beta_{y}(t)}-\frac{2 \pi}{C} v_{y} s
\end{aligned}
$$

and

$$
\begin{aligned}
& v_{x}=\frac{1}{2 \pi} \int_{0}^{c} \frac{d t}{\beta_{x}(t)}, \\
& v_{y}=\frac{1}{2 \pi} \int_{0}^{c} \frac{d t}{\beta_{y}(t)}
\end{aligned}
$$

with C being the circumference of the accelerator. Note, $\mu_{x}(s)$ and $\mu_{y}(s)$ are periodic functions of s with a period of C / P where P is the periodicity of the lattice.

The new action angle variables are related to the old as follows

$$
\begin{gathered}
I_{x}=J_{x} \\
I_{y}=J_{y} \\
\xi_{x}=\psi_{x}-\mu_{x}(s) \\
\xi_{y}=\psi_{y}-\mu_{y}(s)
\end{gathered}
$$

where ξ_{x} and ξ_{y} are the new angle variables.
The transformation of Hamiltonian H_{1} with the generating function G leads to the following Hamiltonian

$$
\begin{gathered}
H_{2}=\frac{2 \pi}{C}\left[\nu_{x} I_{x}+\nu_{y} I_{y}+\left[2 I_{x}\right]^{3 / 2} \sum_{n=-\infty}^{\infty} e^{-i 2 \pi n s / C}\left(A_{n} e^{i 3 \xi_{x}}+\right.\right. \\
\left.+3 B_{n} e^{i \xi_{x}}\right)-\left[2 I_{x}\right]^{1 / 2}\left[2 I_{y}\right] \sum_{n=-\infty}^{\infty} e^{-i 2 \pi n s / C}\left(C_{n} e^{i\left(\xi_{x}+2 \xi_{y}\right)}+\right. \\
\left.\left.+D_{n} e^{i\left(\xi_{x}-2 \xi_{y}\right)}+2 E_{n} e^{i \xi_{x}}\right)\right]
\end{gathered}
$$

where

$$
\begin{gathered}
A_{n}=\frac{i}{48 \pi} \int_{0}^{C} S(t) \beta_{x}^{3 / 2}(t) e^{i\left[3 \mu_{x}(t)+2 \pi n t / C\right]} d t \\
B_{n}=\frac{i}{48 \pi} \int_{0}^{C} S(t) \beta_{x}^{3 / 2}(t) e^{i\left[\mu_{x}(t)+2 \pi n t / C\right]} d t \\
C_{n}=\frac{i}{16 \pi} \int_{0}^{C} S(t) \beta_{x}^{1 / 2}(t) \beta_{y}(t) e^{i\left[\mu_{x}(t)+2 \mu_{y}(t)+2 \pi n t / C\right]} d t \\
D_{n}=\frac{i}{16 \pi} \int_{0}^{c} S(t) \beta_{x}^{1 / 2}(t) \beta_{y}(t) e^{i\left[\mu_{x}(t)-2 \mu_{y}(t)+2 \pi n t / C\right]} d t \\
E_{n}=\frac{i}{16 \pi} \int_{0}^{c} S(t) \beta_{x}^{1 / 2}(t) \beta_{y}(t) e^{i\left[\mu_{x}(t)+2 \pi n t / C\right]} d t .
\end{gathered}
$$

The terms $A_{n}, B_{n}, C_{n}, D_{n}$ and E_{n} give the resonance strengths for the following resonances

$$
\begin{gathered}
3 \nu_{x}=n \\
v_{x}=n
\end{gathered}
$$

$$
\begin{gathered}
\nu_{x}+2 \nu_{y}=n \\
\nu_{x}-2 \nu_{y}=n \\
\nu_{x}=n
\end{gathered}
$$

respectively. In the next section we will minimize the resonance strengths for the resonances given in the introduction.

3. Strategy

The AGS-Booster consist of six superperiods and each superperiod contains eight chromaticity correcting sextupoles. Each chromaticity sextupole will have a trim coil which will be used to correct for random sextupole errors. Using these trim coils we want to generate a sextupole resonance that cancels those resonances excited by the random sextupoles. Thus, in an ideal accelerator with no random sextupole errors, we want to find the strengths of the trim coil sextupoles to excite any given imperfection resonance.

We are concerned with the four resonances listed in the introduction. The corresponding strengths are A_{14}, C_{14}, A_{13} and C_{13}. Since these numbers are complex, there are eight conditions to be satisfied. The integrals in the previous section relating the sextupole strengths to the resonance strengths can be converted to sums by using the thin lens approximation as

$$
\begin{gathered}
A_{n}=\frac{i}{48 \pi} \sum_{p=1}^{6} \sum_{q=1}^{8} S_{p q} \beta_{x}^{3 / 2}\left(t_{p q}\right) e^{i\left[3 \mu_{x}\left(t_{p q}\right)+2 \pi n t_{p q} / C\right]} \\
C_{n}=\frac{i}{16 \pi} \sum_{p=1}^{6} \sum_{q=1}^{8} S_{p q} \beta_{x}^{1 / 2}\left(t_{p q}\right) \beta_{y}\left(t_{p q}\right) e^{i\left[\mu_{x}\left(t_{p q}\right)+2 \mu_{y}\left(t_{p q}\right)+2 \pi n t_{p q} / C\right]}
\end{gathered}
$$

where the outer sum is over the superperiods, $S_{p q}$ are the integrated sextupole strength of the correctors and $t_{p q}$ are the positions of the center of the correctors.

Due to the periodicity of the β and μ functions the above sums can be simplified. First, we define

$$
t_{q}=t_{(p=1) q}
$$

then

$$
\mathrm{t}_{\mathrm{pq}}=\mathrm{t}_{\mathrm{q}}+(\mathrm{p}-1) \mathrm{C} / 6
$$

for $p=1,2,3, \ldots 6$ and $q=1,2,3, \ldots 8$. Defining the coefficients f_{p} so that

$$
S_{p q}=f_{p q} S_{q}
$$

relates the sextupole strength of the correctors from one superperiod to the next. The sums can now be written as

$$
\begin{gathered}
A_{n}=\frac{i}{48 \pi}\left[\sum_{p=1}^{6} f_{p} e^{i \pi n(p-1) / 3}\right] \sum_{q=1}^{8} S_{q} \beta_{x}^{3 / 2}\left(t_{q}\right) e^{i\left[3 \mu_{x}\left(t_{q}\right)+2 \pi n t_{q} / C\right]} \\
C_{n}=\frac{i}{16 \pi}\left[\sum_{p=1}^{6} f_{p} e^{i \pi n(p-1) / 3}\right] \sum_{q=1}^{8} S_{q} \beta_{x}^{1 / 2}\left(t_{q}\right) \beta_{y}\left(t_{q}\right) e^{i\left[\mu_{x}\left(t_{q}\right)+2 \mu_{y}\left(t_{q}\right)+2 \pi n t_{q} / C\right]}
\end{gathered}
$$

Choosing $f_{p}=\cos [\pi n(p-1) / 3]$ for $n=13$ and for $n=14$ leads to the greatest contribution to each of the two sets of resonances separately. Furthermore, the two sets of f_{p} for $n=13$ and for $n=14$ are orthogonal (i.e. f_{p} of $n=13$ doesn't contribute to A_{14} and C_{14} and vice versa).

Now we can solve for the unknowns S_{q} for a given choice of A_{13}, C_{13}, A_{14} and C_{14}. Due to the orthogonality between $n=13$ and $n=14$ we have sixteen unknowns (from two independent sets of S_{q}) with eight conditions. These additional unknowns are handeled by the following scheme:

$$
S_{1}=S_{5}, \quad S_{2}=S_{6}, \quad S_{3}=S_{7} \text { and } S_{4}=S_{8}
$$

A listing of a program that uses the above strategy for solving for the trim coil sextupole strengths is given in the appendix. Using this program we have calculated the sextupole correctors for various different random seeds of sextupole errors. We have assumed a 10% variation on the systematic value of the eddy current sextupole (i.e. $\mathrm{B}^{\prime \prime}=.24 \mathrm{~T} / \mathrm{m}^{2}$) in the dipoles and 0.1% error in the chromaticity sextupoles. In each case we used a uniform distribution of errors. The table below shows the random number seed versus the maximum strength of the corrector

SEED	MAXIMUM CORRECTOR STRENGTH $\left(\mathrm{m}^{-2}\right)$	POLE TIP
	FIELD (GAUSS)	
78687	.0502	34.5
19163	.0140	9.6
8104411	.0113	7.8
47887	.0499	34.3
838301	.0430	29.6

where we assumed a trim coil 10 cm long and the pole tips 8 cm from the axis.

Figure 2 shows how the pole tip field strength of the trim coils change when the strength of the random sextupole component changes. This was calculated with a random seed of 78687.

4. Conclusion

A particle in the AGS-Booster can cross four strong imperfection resonances due to the large space charge tune spread at injection. We have formulated a strategy for correcting these resonances using a set of trim coils in the chromaticity sextupoles.

In order to design this system we must know the largest possible pole tip fields required by the trim coils. To do this we ran several test cases using different random seeds. The results of these runs are given in the above table. We find the maximum pole tip field to be about 35 Gauss when the random sextupoles are from 10% of the systematic eddy current sextupoles in the dipoles. The effect of the 0.1% errors in the chromaticity sextupoles are negligable. If more resonances than the four given in the introduction are required to be corrected, then the upper limit may need to be increased.

References

1. G. Morgan and S. Kahn, Booster Tech Note \#4
2. H. Goldstein, Classical Mechanics, (Addison Wesley, 1965)
3. E. D. Courant and H. S. Snyder, Annals of Physics 3, 1-48 (1958)
4. W. H. Press, et al, Numerical Recipes (Cambridge University Press, 1986)

Appendix

Below is a listing of the program that was used to calculate the trim coil sextupole strengths. The program is written in FORTRAN 77 and was tested on the VAX. The input consists of two files. The first file includes the number of trim coils per superperiod; the number of superperiods; position, betatron functions and the phase advance for each trim coil in the first superperiod; the betatron tunes and the circumference. The second file consist of the real and imaginary parts of A_{13}, C_{13}, A_{14} and C_{14}. After the program has run the array $s x\left({ }^{(*)}\right.$ contains the strength of all the trim coils.

program correctors

c c c c c c c

This program calculates the coefficients for each correcting sextupole to determine the resonance strengths the correctors drive.

We use the thin lens approximation.
implicit real*8 (a-h,o-z)

anorm bx	= a normalizing factor for the resonance strengths $=$ the beta function (x direction)
by	$=$ the beta function (y direction)
cct	$=$ the trim coil package contribution to resonance
cfac	$=\mathrm{a}$ transformation factor for the resonance strength
circ	$=$ the machine circumference
cstr	$=$ the real part of the resonance strength to be excited
csup	$=$ the real part of the superperiod contribution to the resonance
maxsize	$=$ maximum size for sextupoles per superperiod
msxt	$=$ maximum size of sextupole array
mux	$=$ the phase advance (x direction, 2^{*} pi included)
muy	$=$ the phase advance (y direction, 2*pi included)
nct	$=$ the number of trim coil packages per superperiod
nres	$=$ the number of resonances
nsup	$=$ the number of superperiods
nsupmax	= maximum superperiod
sct	$=$ the trim coil package contribution to resonance
sfac	$=$ a transformation factor for the resonance strength
snorm	$=$ the coefficient for a given sextupole from one superperiod to the next
sstr	$=$ the imaginary part of the resonance strength to be excited
ssup	$=$ the imaginary part of the superperiod contribution to the resonance
suml	$=$ position of the center of the trim coil package
SX	= sextupole array
vx	$=$ tune in x direction
vy	$=$ tune in y direction
wx	$=$!
wy	$=$! a resonance $\Rightarrow{ }^{\text {a }}$ wx*vx $+\mathrm{wy}^{*} v y=w p$
wp	$=$!

```
    parameter (maxsize=100, nres=4, nsupmax=60, msxt=maxsize*nsupmax,
    1
                pi=3.141592653589793d0, twopi=6.2831853071795865d0)
            real*8 mux, muy
            complex*16 ccoef
            character smtrm*4,stype*4
            dimension suml(maxsize), bx(maxsize), mux(maxsize), by(maxsize),
            1
                    M,
                    nsupmax), ssup(nres, nsupmax), anorm(nres), cct (nres,
                    maxsize),sct(nres,maxsize),cstr(nres),sstr(nres),
                    4 snorm(nres, nsupmax),sfac(nres),sx(msxt),b(nres),
                    5 a(nres,nres),cfac(nres),indx(nres)
c ----- the resonances
            data wx/ 3.dO, 1.dO, 3.dO, 1.d0/,
            1 wy/ 0.d0, 2.d0, 0.d0, 2.dO/,
            2 wp/13.dO,13.dO,14.dO,14.dO/,
            3 anorm/48.d0,16.dO,48.d0,16.dO/,
            4 sx/msxt*0.d0/
c ------ reading in the lattice parameters
            read(4,10) nct, nsup
    10 format(2i8)
            do 20 i=1, nct
                read(4,30) suml(i),bx(i), zmux,by(i), zmuy
                mux(i)=twopi*zmux
                muy(i)=twopi*zmuy
    30 format(5e16.9)
    20 continue
    read(4,30) circ,vx,vy
c ----- reading the resonance strengths
    read(5,*) (cstr(i),sstr(i),i=1,nres)
c ----- contribution to each resonance by superperiod
    part=twopi/dfloat(nsup)
    write(6,*)
    do 40 i=1,nres
                    do 40 j=1,nsup
                        arg=wp(i)*part*dfloat(j-1)
                        csup(i,j)=dcos(arg)
                        ssup(i,j)=dsin(arg)
    4 0 ~ c o n t i n u e
        do 50 j=1, nsup
            write(6,60) j,(\operatorname{csup}(i,j),ssup(i,j),i=1,nres)
    60 format(1x,i4,8f9.6)
    50 continue
c ----- contribution to each resonance from within each superperiod
    conv=twopi/circ
    do 70 i=1,nres
                do 70 j=1,nct
                    ccoef=dcmplx(0.d0,bx(j)**(.5d0*wx(i))*by(j)**(.5d0*
                        wy(i))/(anorm(i)*pí)*cdexp(dcmplx(0.d0,wx(i)*
                        (mux(j)-conv*vx*suml(j))+wy(i)*(muy(j)-conv*
                        vy*suml(j))+wp(i)*conv*suml(j)))
                cct(i,j)=dreal (ccoef)
                sct(i,j)=dimag(ccoef)
    7 0 \text { continue}
    write(6,*)
    do }80\textrm{j}=1\mathrm{ , nct
            write(6,60) j,(cct(i,j),sct(i,j),i=1,nres)
    80 continue
c
```

```
c the sextupoles are modeled by each being equal to its
c neighbor then for each resonance we solve a set of 4 x 4
c linear equations to obtain the sextupole sterngths.
c
c ----- the resonance strengths are converted to deal with each superiod
c ----- separately
    do 90 i=1,nres
        cfac(i)=0.d0
        sfac(i)=0.d0
        do S0 j=1, nsup
            snorm(i,j)=csup(i,j)
            cfac(i)=cfac(i)+snorm(i,j)*csup(i,j)
            sfac(i)=sfac(i)+snorm(i,j)*ssup(i,j)
    90 continue
c ----- the linear equation to solve
c ----- the p=13 resonances
    den1=cfac(1)**2+sfac(1)**2
    den2=cfac(2)**2+sfac(2)**2
    b(1)=(cfac(1)*cstr(1)+sfac(1)*sstr(1))/den1
    b(2)=(cfac(1)*sstr(1)-sfac(1)*cstr(1))/den1
    b(3)=(cfac(2)*cstr(2)+sfac(2)*sstr(2))/den2
    b(4)=(cfac(2)*sstr(2)-sfac(2)*cstr(2))/den2
    do 95 i=1,2
                do 95 j=1,4
                a(2*i-1,j)=cct(i,j)+cct(i,j+4)
                a(2*i,j)=sct(i,j)+sct(i,j+4)
    95 continue
    call ludcmp(a,4,nres,indx,dsgn)
    call lubksb(a,4,nres,indx,b)
    do }100\textrm{i}=1\mathrm{ , nsup
        do 100 j=1,4
                karg=8*(i-1)+j
                sx(karg)=snorm(1,i)*b(j)
                sx(karg+4)=sx(karg)
    100 continue
c ----- for p=14 resonances
    den3=cfac(3)**2+sfac(3)**2
    den4=cfac(4)**2+sfac(4)**2
    b(1)=(cfac(3)*cstr(3)+sfac(3)*sstr(3))/den3
    b(2)=(cfac(3)*sstr(3)-sfac(3)*cstr(3))/den3
    b(3)=(cfac(4)*cstr(4)+sfac(4)*sstr(4))/den4
    b(4)=(cfac(4)*sstr(4)-sfac(4)*cstr(4))/den4
    do }105\textrm{i}=1,
        do 105 j=1,4
            a(2*i-1,j)=cct(i+2,j)+cct (i+2,j+4)
            a(2*i,j)=sct(i+2,j)+sct(i+2,j+4)
    105 continue
    call ludcmp(a,4,nres,indx,dsgn)
    call lubksb(a,4,nres,indx,b)
    do }110\textrm{i}=1,\textrm{nsup
        do 110 j=1,4
                karg=8*(i-1)+j
                sx(karg)=sx(karg)+snorm(3,i)*b(j)
                sx(karg+4)=sx(karg+4)+snorm(3,i)*b(j)
    110 continue
c ----- printing out the value of the sextupoles
    do }120\textrm{i}=1,\mathrm{ nct*nsup
        if (mod(1,2) .eq. 1) then
```

```
            smtrm='+ SF'
            stype='CHRF'
                else
            smtrm='+ SD'
            stype=' CHRD'
                endif
                write(7,130) i,stype,sx(i),smtrm
                format(4x,'SCT',i2.2,' : MULTIPOLE, TYPE=', a4,', K2L=',
    1.
                            f19. 15,a4)
120 continue
    end
```



```
c LU Decomposition of a linear system of equations
c*******************************************************************
c
c W. H. Press, et al; 'Numerical Recipes',(Cambridge University
c Press, 1986)
c
    SUBROUTINE LUDCMP(A,N,NP, INDX, D)
    implicit real*8 (a-h,o-z)
    PARAMETER (NMAX=100,TINY=1.Od-20)
    DIMENSION A(NP,NP), INDX(N),VV(NMAX)
    D=1.dO
    DO 12 I=1,N
        AAMAX=0.dO
        DO 11 J=1,N
            IF (dABS(A(I,J)).GT.AAMAX) AAMAX=dABS(A(I,J))
11 CONTINUE
        IF (AAMAX.EQ.O.dO) PAUSE 'Singular matrix.'
        VV(I)=1.dO/AAMAX
    12 CONTINUE
    DO }19\textrm{J}=1,\textrm{N
        IF (J.GT. 1) THEN
            DO 14 I=1,J-1
            SUM=A(I, J)
            IF (I.GT.1)THEN
                    DO 13 K=1,I-1
                    SUM=SUM-A(I , K)*A(K,J)
13 CONTINUE
                    A(I , J )=SUM
                    ENDIF
14 CONTINUE
    ENDIF
    AAMAX=0. dO
    DO 16 I=J,N
        SUM=A(I,J)
        IF (J.GT. 1)THEN
            DO 15 K=1,J-1
                SUM=SUM-A(I , K)*A(K,J)
                        CONTINUE
                    A(I, J )=SUM
        ENDIF
        DUM=VV(I)*dABS(SUM)
        IF (DUM. GE. AAMAX) THEN
            IMAX=I
            AAMAX=DUM
        ENDIF
    16 CONTINUE
```

```
        IF (J.NE. IMAX)THEN
            DO 17 K=1,N
            DUM=A(IMAX, K)
            A(IMAX,K)=A(J,K)
            A(J,K)=DUM
17 CONTINUE
        D=-D
        VV(IMAX)=VV(J)
        ENDIF
        INDX(J)=IMAX
        IF (J. NE.N)THEN
        IF(A(J,J).EQ.O. )A(J, J)=TINY
        DUM=1.dO/A(J,J)
        DO }18\textrm{I}=\textrm{J}+1,\textrm{N
            A(I,J)=A(I, J)*DUM
        CONTINUE
        ENDIF
    19 CONTINUE
        IF(A(N,N).EQ.O.dO)A(N,N)=TINY
        RETURN
    END
    SUBROUTINE LUBKSB(A,N,NP, INDX, B)
    implicit real*8 (a-h,o-z)
    DIMENSION A(NP,NP),INDX(N),B(N)
    I I=O
    DO 12 I=1,N
        LL=INDX(I)
        SUM=B(LL)
        B(LL)=B(I)
        IF (II.NE.O)THEN
            DO 11 J=II, I-1
                SUM=SUM-A(I,J)*B(J)
11 CONTINUE
            ELSE IF (SUM.NE.O.) THEN
                II=I
            ENDIF
            B(I)=SUM
12 CONTINUE
    DO 14 I=N, 1, -1
            SUM=B(I)
            IF(I.LT.N)THEN
                DO 13 J=I+1,N
                    SUM=SUM-A(I,J)*B(J)
                    13 CONTINUE
            ENDIF
            B(I)=SUM/A(I, I )
14 CONTINUE
    RETURN
    END
```


Fig. 1 Tune Diagram

Fig. 2 Pole tip strength versus random sextupde strength

[^0]: Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

