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RANDOM SEXTUPOLE CORRECTION 

S. Tepikian 

Abstract 

The AGS-Booster has a large tune spread and strong random eddy current 
sextupoles at injection. As a result, particles in the beam may cross four 
strong imperfection resonances. We correct these four resonances using trim 
coils in the chromaticity sextupoles. A scheme is presented for determining 
the strength of these correctors. For random sextupole errors of 10% of the 
systematic eddy current sextupoles in the dipoles and .l% errors in the 
chromaticity sextupoles, we find that the maximum pole tip field for these 
trim c:oils is about 35 Gauss. 



1. Introductipn 

The AGS-Booster is designed to be a fast cycling machine to increase the 
space charge limit of the AGS. Hence, at injecti?n, the dipoles contain large 
eddy current sextupoles due to the fast cycling and the space charge tune 
spread is very large. The random component of the eddy current sextupoles can 
excite imperfection resonances that may be crossed by the space charge tune 
spread. 

The imperfection resonances that are important can be seen from the tune 
diagram in Fig. 1. Only the resonances excited by sextupoles are shown in 
this figure. The dotted line shows the possible range of tune spread due to 
the space charge of the beam. The four imperfection resonances that can be 
crossed are 
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During machine operation, it may be found that some of the other nearby 

resonances are also important (such as v -2v = -4, etc.). These can be 
X 

included but with some additional expense: (1) itronger correctors and (2) a 

larger control program to determine the corrector strengths may be required. 

The imperfection resonances listed above can be canceled by including 
sextupole correctors in the chromaticity sextupoles. These imperfection 
resonances are assumed to be excited by random sextupoles. There are two 
sources of random sextupoles considered: (1) from eddy currents in the dipoles 
at injection and (2) from errors in the chromaticity sextupoles. 

We start with the theory given in the next section. Section 3 gives the 
strategy we used in finding the corrector strengths. Finally, a conclusion is 
given in section 4. 

2. Theory 

The motion of a particle in the beam of an accelerator can be described 
by the following Hamiltonian 

where x and y are the particles position with respect to the equilibrium, p 

and p are the conjugate momenta, 
Y 

K(s) is the quadrupole strength, S(s) is thz 

sextupole strength, p(s) is the radius of curvature and s is the independent 
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variable (i.e. the time variable). We have assumed the particle is at the 
equilibrium momentum. 

The resonance strengths can be found by applying two canonical 
transformations to the Hamiltonian H and then expanding the potential term in 
a fourier series. The first canonical transformation (which transforms the 
Hamiltonian to action-angle2 variables) is given by the generating function 

shown below: 

where @ 
X 

and # 
Y 

are the new angle variables, primes denote d/ds and the 

functions Bx(sl and B,(s) are the solutions of the following equations 
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are related to x and y as follows 
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Note, the emittance of the beam is related to the action by 25 = E /n and 

25 
= EY'n. 

If there are no sextupoles present (i.e. S(s) = "01 then the 
Y 

emittances (and the actions1 are invariants of the motion3. 

Using the generating function, F, 
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the new Hamiltonian becomes 
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The next transformation will eliminate the time dependence in the first 

two terms in the Hamiltonian H 
1' 

This transformation is given by the 

following generating function 
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periodic functions of s with a 
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of the accelerator. Note, px(s) and py(s) are 

period of C/P where P is the periodicity of the 

The new action angle variables are related to the old as follows 
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where < and S are the new angle variables. 
X Y 

The transformation of Hamiltonian H1 with the generating function G leads 

to the following Hamiltonian 
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respectively. In the next section we will minimize the resonance strengths 
for the resonances given in the introduction. 

3. Strategy 

v +2v =n 
X Y 

V -2v =n 
X Y 

V =n 
X 

The AGS-Booster consist of six superperiods and each superperiod contains 
eight chromaticity correcting sextupoles. Each chromaticity sextupole will 
have a trim coil which will be used to correct for random sextupole errors. 
Using these trim coils we want to generate a sextupole resonance that cancels 
those resonances excited by the random sextupoles. Thus, in an ideal 
accelerator with no random sextupole errors, we want to find the strengths of 
the trim coil sextupoles to excite any given imperfection resonance. 

We are concerned with the four resonances listed in the introduction. 

The corresponding strengths are A14, Ci4, Ai3 and C1s. Since these numbers 

are complex, there are eight conditions to be satisfied. The integrals in the 

previous section relating the sextupole strengths to the resonance strengths 

can be converted to sums by using the thin lens approximation as 

6 8 

A=& 
(tpq1+27rntpq/C1 

n 

p=l q=l 

6 8 

SpqB~(tpq113 (t le 
i[~X(tpq1+2~y(tpql+2nntpq/Cl 

Y Pq 

p=l q=l 

where the outer sum is over the superperiods, S 
Pq 

are the integrated sextupole 

strength of the correctors and t 
Pq 

are the positions of the center of the 

correctors. 

Due to the periodicity of 
simplified. First, we define 

the 6 and p functions the above sums can be 

t =t 
q (p=l)q 
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then 

t 
Pq 

= t + (p-l)C/6 
q 

for p = 1, 2, 3, . . . 6 and q = 1, 2, 3, . . . 8. Defining the coefficients f 
P 

so that 

S =fS 
P4 Pq 

relates the sextupole strength of the correctors from one superperiod to the 
next. The sums can now be written as 

A=& 
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Choosing fp = cos[nn(p-11/31 for n = 13 and for n = 14 leads to the 

greatest contribution to each of the two sets of resonances separately. 

Furthermore, the two sets of f for n = 13 and for n = 14 
P 

are orthogonal 

(i.e. fp of n = 13 doesn't contribute to Al4 and Cl4 and vice versa). 

Now we can solve for the unknowns S for a given choice of Ai3, C1s, Al4 
q 

and C 
:14’ 

Due to the orthogonality between n = 13 and n = 14 we have 

sixteen unknowns (from two independent sets of S 1 with eight conditions. 
q 

These additional unknowns are handeled by the following scheme: 

S1 = Ss , Sz = S8 , Ss = S7 and S4 = S8 

A listing of a program that uses the above strategy for solving for the 
trim coil sextupole strengths is given in the appendix. Using this program we 
have calculated the sextupole correctors for various different random seeds of 
sextupole errors. We have assumed a 10% variation on the systematic value of 
the eddy current sextupole (i.e. B" = .24 T/m21 in the dipoles and 0.1% 
error in the chromaticity sextupoles. In each case we used a uniform 
distribution of errors. The table below shows the random number seed versus 
the maximum strength of the corrector 
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SEED MAXIMUM CORRECTOR 
STRENGTH ( m-2 ) 

POLE TIP 
FIELD (GAUSS) 

78687 .0502 34.5 
19163 .0140 9.6 

8104411 .0113 7.8 
47887 .0499 34.3 
838301 .0430 29.6 

where we assumed a trim coil 10 cm long and the pole tips 8 cm from the 
axis. 

Figure 2 shows how the pole tip field strength of the trim coils change 
when the strength of the random sextupole component changes. This was 
calculated with a random seed of 78687. 

4. Conclusion 

A particle in the AGS-Booster can cross four strong imperfection 
resonances due to the large space charge tune spread at injection. We have 
formulated a strategy for correcting 
coils in the chromaticity sextupoles. 

these resonances using a set of trim 

In order to design this system we must know the largest possible pole tip 
fields required by the trim coils. To do this we ran several test cases using 
different random seeds. The results of these runs are given in the above 
table. We find the maximum pole tip field to be about 35 Gauss when the 
random sextupoles are from 10% of the systematic eddy current sextupoles in 
the dipoles. The effect of the 0.1% errors in the chromaticity sextupoles are 
negligable. If more resonances than the four given in the introduction are 
required to be corrected, then the upper limit may need to be increased. 

3.. G. Morgan and 

2. H. Goldstein, 

3. E. D. Courant 

4. W. H. Press, 
1986) 
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Appendix 

Helow is a listing of the program that was used to calculate the trim 
coil sextupole strengths. The program is written in FORTRAN 77 and was tested 
on the VAX. The input consists of two files. The first file includes the 
number of trim coils per superperiod; the number of superperiods; position, 
betatron functions and the phase advance for each trim coil in the first 
superperiod; the betatron tunes and the circumference. The second file 
consist of the real and imaginary parts of AI3, C13, AI4 and C14. After the 

program has run the array sx(*) contains the strength of all the trim coils. 
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program correctors 

This program calculates the coefficients for each correcting 
sextupole to determine the resonance strengths the correctors 
drive. 

We use the thin lens approximation. 

implicit real*8 (a-h,o-z) 

anorm = 
bx = 
by = 
cct = 
cfac = 
circ = 
cstr = 

csup = 

maxsize = 
msxt = 
mux = 
muy = 
net = 
nres = 
nsup = 
nsupmax = 
set 
sfac 
snorm 

sstr 

ssup 

sum1 
sx 
vx 
vY 
wx 
WY 
wp 

a normalizing factor for the resonance strengths 
the beta function (x direction) 
the beta function (y direction) 
the trim coil package contribution to resonance 
a transformation factor for the resonance strength 
the machine circumference 
the real part of the resonance strength to be 
excited 
the real part of the superperiod contribution 
to the resonance 
maximum size for sextupoles per superperiod 
maximum size of sextupole array 
the phase advance (x direction, 2*pi included) 
the phase advance (y direction, 2*pi included) 
the number of trim coil packages per superperiod 
the number of resonances 
the number of superperiods 
maximum superperiod 
the trim coil package contribution to resonance 
a transformation factor for the resonance strength 
the coefficient for a given sextupole from one 
superperiod to the next 
the imaginary part of the resonance strength to be 
excited 
the imaginary part of the superperiod contribution 
to the resonance 
position of the center of the trim coil package 
sextupole array 
tune in x direction 
tune in y direction 

! a resonance => wx*vx + wy*vy = wp 
! 
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parameter (maxsize=lOO, nres=4, nsupmax=60, msxt=maxsize*nsuPmax, 

11 pi=3.141592653589793dO, twopi=6.2831853071795865dO) 
real*8 mux,muy 
complex*16 ccoef 
character smtrm*4,stype*4 
dimension sumi(maxsizeI,bx(maxsize),mux(maxs~ze),bY(maxsize~~ 
11 muy(maxsize),wx(nresI,wy(nres),wp(nres),csuP(nresS 
2 nsupmax),ssup(nres,nsupmaxI,anorm(nres),cct(nres, 
3 ma.xsize),sct(nres,maxsize),cstr(nresI,sstr(nresI, 
4 snorm(nres,nsupmax),sfac(nres),sx(msx(msxtI,b(nres), 
5 a(nres,nres),cfac(nres),indx(nres) 

c ------ the resonances 
data wx/ 3.d0, l.dO, 3.d0, l.dW, 
31 wy/ O.dO, 2.d0, O.dO, 2.dW, 

2 wp/13.dO,13.dO,14.dO,14.dO~, 
3 anorm/48.dO,16.dO,48.dO,16.dO~, 

ice parameters 
4 sx/msxt*O.dO/ 

c ------ reading in the latt 
read(4,lO) nct,nsup 

10 format(2i8) 
do 20 i=l,nct 

read(4,30) suml(i 
mux(i)=twopi*zmux 
muy(i)=twopi*zmuy 

30 format(5e16.9) 
20 continue 

read(4,30) circ,vx,vy 

),bx(i),zmux,by(i).zmuY 

c ------ reading the resonance strengths 
read(5,*) (cstr(i),sstr(i),i=l,nres) 

c ------ contribution to each resonance by superperiod 
part=twopi/dfloat(nsup) 
write(6,*) 
do 40 i=l,nres 

do 40 j=l,nsup 
arg=wp(i)*part*dfloat(j-1) 
csup(i,j)=dcos(arg) 
ssup(i,j)=dsin(argI 

40 continue 
do 50 j=l,nsup 

write(6,60) j,(csup(i,j),ssup(i,j),i=l,nres) 
60 format(lx,i4,8f9.6) 
50 continue 

c ------ contribution to each resonance from within each superperiod 
conv=twopi/circ 
do 70 i=l,nres 

do 70 j=l,nct 
ccoef=dcmplx(O.dO,bx(j) **(.5dO*wx(i))*by(j)**(.5dO* 

3. wy(i))/(anorm(i)*pi))*cdexp(dcmplx(O.dO,wx(i)* 
2 (mux(j)-conv*vx*suml(j))+wy(i)*(muy(j)_conv* 
3 vy*suml(j))+wp(i)*conv*suml(j~I~ 

cct(i,j)=dreal(ccoef) 
sct(i,j)=dimag(ccoef) 

70 continue 
write(6,*) 
do 80 j=l,nct 

write(6,60) j,(cct(i,j),sct(i,j),i=l,nres) 
80 continue 

C 
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C the sextupoles are modeled by each being equal to its 
C neighbor then for each resonance we solve a set of 4 x 4 
C linear equations to obtain the sextupole sterngths. 
C 

c ------ the resonance strengths are converted to deal with each superiod 
c ------ separately 

do 90 i=l,nres 
cfac(i)=O.dO 
sfac(i)=O.dO 
do 90 j=l,nsup 

snorm(i,j)=csup(i,j) 
cfac(i)=cfac(i)+snorm(i,j)*csup(i,j) 
sfac(i)=sfac(i)+snorm(i,j)*ssup(i,j) 

90 continue 
c ------ the linear equation to solve 
c ------ the p=13 resonances 

denl=cfac(l)**2+sfac(l)**2 
den2=cfac(21**2+sfac(21S*2 
b(l)=(cfac(l)*cstr(l)+sfac(l~*sstr(l~I/denl 
b(2)=(cfac(l)*sstr(l)_sfac(l)*cstr(l))/denl 
bi3)=(cfac(2I*cstr(2)+sfac(2I*sstr(2))/der-S 
b(4)=(cfac(2)*sstr(2)_sfac(2I*cstr(2)I/den2 
do 95 i=1,2 

do 95 j=1,4 
a(2*i-l,j)=cct(i,j)+cct(i,j+4) 
a(2*i,j)=sct(i,j)+sct(i,j+4) 

95 continue 
call ludcmp(a,4,nres,indx,dsgn) 
call lubksb(a,4,nres,indx,bI 
do 100 i=l,nsup 

do 100 j=1,4 
karg=8*(i-l)+j 
sx(karg)=snorm(l,i)*b(j) 
sx(karg+4)=sx(karg) 

100 continue 
c ------ for p=14 resonances 

den3=cfac(31**2+sfac(3)XB2 
den4=cfac(41S*2+sfac(4)**2 
b(l)=(cfac(31Scstr(3)+sfac(3)*sstr(3))/den3 
b(2)=(cfac(3)*sstr(3)_sfac(3)*cstr(3))/den3 
b(3)=(cfac(4)*cstr(4)+sfac(4I*sstr(4))/den4 
b(4)=(cfac(4)*sstr(4)_sfac(4)*cstr(4))/den4 
do 105 i=1,2 

do 105 j=1,4 
a(2*i-l,j)=cct(i+2,j)+cct(i+2,j+4) 
a(2*i,j)=sct(i+2,j)+sct(i+2,j+4) 

105 continue 
call ludcmp(a,4,nres,indx,dsgnI 
call lubksb(a,4,nres,indx,b) 
do 110 i=l,nsup 

do 110 j=1,4 
karg=8*(i-l)+j 
sx(karg)=sx(karg)+snorm(3,i)*b(j) 
sx(karg+4)=sx(karg+4)+snorm(3,i)*b(j) 

110 continue 
c ------ printing out the value of the sextupoles 

do 120 i=l,nct*nsup 
if (mod(i,2) .eq. 1) then 
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smtrm='+ SF' 
stype='CHRF' 

else 
smtrm='+ SD' 
stype='CHRD' 

endif 
write(7,130) i,stype,sx(i),smtrm 

130 format(4x,'SCT',i2.2,' : MULTIPOLE, TYPE=',a4,', K2L=', 
I. f19.15,a41 

120 continue 
end 

=***************************************~~~*~#~~~*~~~~~~~~~~~~~~~~~~ 

C LU Decomposition of a linear system of equations 
=***************************************~~##~#~~~~~~~~*~~~~~~~~~#~~~ 

C 

C 

C 

C 
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W. H. Press, et al; 'Numerical Recipes',(Cambridge University 
Press, 19861 

SUBROUTINE LUDCMP(A,N,NP,INDX,D) 
implicit real*8 (a-h,o-z) 
PARAMETER (NMAX=lOO,TINY=l.Od-201 
DIMENSION A(NP,NP),INDX(N),VV(NMAX) 

GT.AAMAX) AAMAX=dABS(A(I,J)) 

PAUSE 'Singular matrix.' 

D=l.dO 
DO 12 I=l,N 
AAMAX=O.dO 
DO 11 J=l,N 

IF (dABS(A(I,J)) 
CONTINUE 
IF (AAMAX.EQ.O.dO) 
VV(I)=l.dO/AAMAX 

CONTINUE 
DO 19 J=l,N 

IF (J.GT.l) THEN 
DO 14 I=l,J-1 
SUM=A(I,J) 
IF (I.GT.l)THEN 
DO 13 K=l,I-1 
SUM=SUM-A(I,K)*A(K,J) 

CONTINUE 
A(I,J)=SUM 

ENDIF 
CONTINUE 

ENDIF 
AAMAX=O.dO 
DO 16 I=J,N 
SUM=A(I,J) 
IF (J.GT.l)THEN 
DC 15 K=l,J-1 
SUM=SUM-A(I,K)*A(K,J) 

CONTINUE 
A(I,J)=SUM 

ENDIF 
DUM=W(I)*dABS(SUM) 
IF (DUM.GE.AAMAX) THEN 
IMAX=I 
AAMAX=DUM 

ENDIF 
CONTINUE 
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IF (J.NE.IMAX)THEN 
DO 17 K=l,N 
DUM=A(IMAX,K) 
A(IMAX,K)=A(J,K) 
A(J,K)=DlJM 

17 CONTINUE 
D=-D 
W(IMAX)=VV(J) 

ENDIF 
INDX(J)=IMAX 
IF(J.NE.N)THEN 
IF(A(J,J).EQ.O.)A(J,J)=TINY 
DUM=l.dO/A(J,J) 
DO 18 I=J+l,N 
A(I,J)=A(I,J)*DUM 

18 CONTINUE 
ENDIF 

19 CONTINUE 
IF(A(N,N).EQ.O.dO)A(N,N)=TINY 
RETURN 
END 

C ----~----------------____________--------------------------------- 
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SUBROUTINE LUBKSB(A,N,NP,INDX,B) 
implicit real*8 (a-h,o-z1 
DIMENSION A(NP,NP),INDX(N),B(N) 
II=0 
DO 12 I=l,N 
LL=INDX(I) 
SUM=B(LL) 
B(LL)=B(I) 
IF (II.NE.O)THEN 
DO 11 J=II,I-1 
SUM=SUM-A(I,J)*B(J) 

CONTINUE 
'ELSE IF (SUM.NE.O.l THEN 

II=1 
ENDIF 
B(I)=SUM 

CONTINUE 
DO 14 I=N,l,-1 
SUM=B(I) 
IF(I.LT.N)THEN 
DO 13 J=I+l,N 
SUM=SUM-A(I,J)*B(J) 

CONTINUE 
ENDIF 
B(I)=SUM/A(I,I) 

CONTINUE 
RETURN 
END 
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