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1 Introduction

Positvely charged heavy ions whjch are transfered from the Tandem to the
Booster) line, are injected into the booster by means of an electrostatic
inflector and four fast ferrite dipole kickers. The inflector, which consists of
a cathode and a thin septum, bends the incoming beam along a circular arc
of approximately 15 degrees bringing the beam to the outside edge of the
booster acceptance region. The septum separates and shields the region of

circulating beam in the booster from the electrostatic fields of the inflector.
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closed orbit which places the distorted orbit near the septum. This allows
beam emerging from the infiector to enter the acceptance region of the
booster. Since the beam arrives from the Tandem in pulses of 200-400
microsecond duration, and the period for one revolution around the
booster is 5-17 microseconds (depending on the ion species), the injection
process takes place over several revolutions—or turns—of beam around the

machine, and as such is refered to as multiturn injection.
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As the beam enters the booster it occupies a region of phase space which is
beyond the outer side of the septum. On subsequent turns around the
machine the beam will eventually return to this region and hit the septum
if the distorted orbit is not moved away. For a given position and angle of
the distorted orbit, the number of turns that can be injected before having
to move the orbit, and the amount by which the orbit must be moved,
depend on the incoming beam ellipse parameters and the horizontal tune.

In this report we obtain conditions for beam survival during injection in
terms of these parameters. The results are consistent with those of Ref. 1.



2 General Considerations

2.1 The Injection Bump

The injection bump is produced by four dipole magnets located in the
injection region with positions

81 < 8y < 8] < 83 < 84 (1)

where s; is the point of injection. Let ¢; be the angular kick produced by
the dipole at s; and let

c i bji |
§j= ( ;j ) , Xe= ( :2 )7 M]',--_:M(sj,s;)-—' ( Z’jt d:: ) (2)

where z., z!. are the horizontal position and angle of the closed orbit at sy,
and M(sj, s;) is the unperturbed—i.e. without the four dipole
kicks—Ilinear transfer matrix from s; to s;. Then if we require that the
four dipoles produce no closed orbit distortion outside the injection region,
we must have

P4+ My3®3 + My2®2 + My 21 =0, (3)

and the position and angle of the closed orbit at the injection point s; are
given by
X.=Mpp®, + M1 9. (4)

Using Egs. (2) in (3) and (4) we find

by1¢1 + bazd2 + byads = 0, (5)
dy1¢1 + dyods + dy3ds + ¢4 = 0, (6)
brig: + biags = z, (7

dné: + drade = 2., (8)

where

bji = 1/B;Bssin(¥; — ¥), (9)

dji = \/—/’%COS(% ~ i) - %j%bji, (10)

and aj, B;, and v; are the horizontal lattice parameters at the point s;.



Thus, if we specify certain values for the posit

s
orbit at the injection point, then equations (5
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and

2.2 Injection onto the Bumped Orbit

/$\ /z\ /y\
xz(zl)a X4=(EZ), Yz(yl) (13)

where z, z/ are the position and angle of a beam particle at the injection

Now let
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position and angle on the next pass by the injection point. Then
X4=MyX +Mg®s+ &4 = MyX - Mp®; - My®;,  (14)
in which we have used (3), and using (4) we find
Xy=MyX - My X, = My (X - Xo). (15)

If My is the unperturbed transfer matrix for one turn around the machine
begining at the injection point, then we have

Y = MM /X, + My & + M2 ®,, (16)
and using (4) and (15) we find
Y - X, = M(X - X,). (17)

This equation gives the turn-by-turn evolution of the beam position and
angle with respect to the closed orbit. The unperturbed transfer matrix,

Mj, is given by
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wiiere Gj, ﬂ[, ¥i = (1 + Ci%)/ﬁj are the machine lat

Now suppose the beam entering the machine is contained within the beam
ellipse
(X - XHE (X - Xo) = ¢, (19)

where

zo and z{ are the position and angle of the center of the ellipse, and e is

the incoming beam emittance. Then it follows from (17) that on the next

pass by the injection point this injected beam will be contained within the
ellipse

(Y- YHF (Y -Yo) =« (21)
where
F = M;EM}, (22)
and
(Yo - Xc) = My(Xo - X,) (23)

2.3 Conditions for Survival of the Injected Beam

2.3.1 Phase Space Layers and Optimum Beam Ellipse
Parameters

As the beam ellipse (19) enters the machine, it occupies a region of phase

space for which the horizontal positions of the beam particles are greater

than the horizontal position, z,, of the outer side of the septum. On
subsequent turns around the machine the beam ellipse remains in the
region between two ellipses,

(X - XNE- X - X)) = ¢
AN c/ \ (o¥) 1

I b

() e

and
(Xt - XHE (X - X,) = e, (25)



which are centered on the closed orbit and are matched to the machine
lattice at the injection point. Here €7 is chosen so that the first ellipse is
the smallest such ellipse which contains the beam ellipse, and ¢, is chosen
so that the second ellipse just touches the outer side of the septum—i.e. so

that
z. + Ve Pr = z,. (26)

Figure 1 shows the relative positions of these ellipses. The labels A, B, and
C refer to the ellipses defined by (19), (24), and (25) respectively.
Although the beam ellipse may occupy various positions between the two
ellipses on subsequent turns around the machine, it will eventually return
to the region of phase space it occupied as it entered the machine. In order
to avoid loosing beam on the septum one must therefore, at an appropriate
time, move the closed orbit away from the septum to a new position, z.,,
for which

Zeo + \/61—,3[— <z, - t, (27)

where t is the septum thickness. Beam entering the machine with the
closed orbit in this new position will remain inside the region between two
new ellipses similar to (24) and (25) but centered on the new closed orbit
position. As before, the beam in this region will eventually hit the septum
unless the closed orbit is moved still further away from the septum. During
the multiturn injection process, the beam is therefore injected into a series
of phase space regions—or layers—between ellipses similar to (24) and
(25). The process continues until the injection bump has collapsed and
beam emerging from the inflector is no longer placed inside the machine
acceptance region. Clearly, the less one has to move the closed orbit away
from the septum for a given layer, the more layers, and hence, the more
beam, one can get into the machine. For a given position and angle (z.,
z!) of the closed orbit, if one chooses the incoming beam ellipse parameters
a, B, zg, and =z, such that ¢; is minimized, then it follows from (27) that
the amount the closed orbit has to be moved away from the septum is
minimized. In Appendix I it is shown that ¢; can be made smallest when

a=af/B; (28)

and
To = T4+ VG, z{) - :c'c = —a(zo — z)/Br. (29)



One then finds that for a fixed 8, the minimum e¢j is given by

_[1+bn%+26%%
61—6{ D , B<l1 (30)
and
€ = €(n+ 2\/5)2, B>1, (31)
where

b=p/B1, n=(zs—z)/VeB1, B=07(n+2vb).  (32)

If B is allowed to vary, then for a given 7, the value of the parameter b for
which ¢ is smallest, is given by

1— 3% = 2nb>/2 (33)

and in this case we have

1+ 3b?
6]26( T ) (34)

Figure 2 shows a plot of b versus 7 obtained from Eq. (33). Here we see
that as the closed orbit is moved away from the septum the optimum S for
the incoming beam ellipse decreases. For the case in which 7 = 0 we have

b=1/v/3 and ¢;/e = 3v/3/2.

Now let z., be the position of the closed orbit (at the injection point) for
the nth phase space layer. Then it follows from (27) that the position,
Zont1, of the closed orbit for the (n + 1)th layer should be given by

Tatl = Pn+ 7, (35)

where

M1 = (33 - zcn+1)/\/€‘?17 Pn = V €In/f, T = t/\/@v (36)

and e, is the value of ¢; obtained from Egs. (30-31) or (33-34) with
7 = 1. Using the recursion relation (35) with py = 0 one obtains 5, for
each phase space layer. Table I lists the values of 7,, pn, and b,, for the
case in which the septum thickness is zero (7 = 0). Here b, is obtained
from (33) with n = 7, and p,, is obtained from (34) with b = b,. The
corresponding positions of the closed orbit and beam ellipse parameters



can be obtained from the table using Eqs. (28-29) and (32). The number
of phase space layers possible during the multiturn injection process can be
determined from the table if the limiting aperture, Ay, in the machine is
known. If 8 is the horizontal beta function at the limiting aperture, then
we must have 1/e;8; < Ay and p, must therefore satisfy

Table I: Phase Space Layers with 7 = 0

11 10.44985 | 0.12748 | 11.25001 | 0.09863 | 0.90137
12 11.25001 | 0.12173 | 12.03217 | 0.09424 | 0.90576
13 12.03217 | 0.11668 | 12.79818 | 0.09038 | 0.90962
14 12.79818 | 0.11222 | 13.54958 | 0.08697 | 0.91303
15 13.54958 | 0.10823 | 14.28766 | 0.08391 | 0.91609

Layer (n) n b, Pn Qn 1-@Qn | Turns
1 0.00000 | 0.57735 | 1.61185 | 0.50000 | 0.50000 2
2 1.61185 | 0.34289 | 2.89628 | 0.25685 | 0.74315 3
3 2.89628 | 0.26485 | 4.03580 | 0.20074 | 0.79926 4
4 4.03580 | 0.22312 | 5.08627 | 0.17027 | 0.82973 5
5 5.08627 | 0.19626 | 6.07396 | 0.15042 | 0.84958 6
6 6.07396 | 0.17716 | 7.01390 | 0.13617 | 0.86383 7
7 7.01390 | 0.16270 | 7.91568 | 0.12531 | 0.87469 7
8 7.91568 | 0.15126 | 8.78592 | 0.11668 | 0.88332 8
9 8.78592 | 0.14193 | 9.62943 | 0.10962 | 0.89038 9
10 9.62943 | 0.13413 | 10.44985 | 0.10369 | 0.89631 9

10
10
11
11
11

The sequence of layers and corresponding parameters given in Table I are
those one would obtain for the ideal case in which the septum thickness is
zero and the beam ellipse parameters are programed so that equations
(28-29) and (33-34) are satisfied. In practice it can be difficult to program
the incoming beam ellipse parameters as the injection bump collapses, and
a real septum must, of course, have a finite thickness. For the case of
injection into the AGS Booster, the beam ellipse parameters a, 8, o, and
z, are fixed, and we will find that b6 = 0.3 and 7 = 0.3. Table II lists the
values of 7,, and p,, obtained from (30-31) and (35) in this case. (The
columns labeled ‘Q’ and ‘Turns’ in tables I and II will be discussed in the
following section.)



Table II: Phase Space Layers with 7 = 0.3, b= 0.3
Layer (n) Mn b, Pn Q | 1-Q | Turns

1 0.30000 | 0.3 | 2.03053 | 0.2 | 0.8 1
2 2.33053 | 0.3 | 3.52661 | 0.2 | 0.8 1
3 3.82661 | 0.3 | 4.93564 | 0.2 | 0.8 5
4 5.23564 | 0.3 | 6.33109 | 0.2 | 0.8 5
5 6.63109 | 0.3 [ 7.72653 | 0.2 | 0.8 5
6 8.02653 | 0.3 | 9.12198 | 0.2 | 0.8 5
7 9.42198 | 0.3 | 10.61743 | 0.2 0.8 5
8 10.81743 | 0.3 | 11.91287 | 0.2 0.8 5
9 12.21287 | 0.3 | 13.30832 | 0.2 0.8 5
10 13.60832 | 0.3 | 14.70376 | 0.2 | 0.8 5

2.3.2 The Horizontal Tune

The number of turns that can be injected into a layer before loosing beam
on the septum depends on the horizontal tune. In Appendix II it is shown
that for a given tune, @, the number of turns that can be injected into a
layer with no loss on the septum is the smallest integer, m > 1, for which

C(n+ Vb)) +/C?+ §2/b>n -, (38)

C = cos(2rmQ), S = sin(27mQ). (39)

where

The number of turns obtained in this way for the case in which @ = 0.2,
b= 0.3, and 7 = 0.3 is listed in Table II for each phase space layer. (We
note that if (38) is satisfied for tune, Q, then it is also satisfied for tune

1 — Q. The number of turns listed in Table II is therefore the same for
Q=02and1-Q=08)

The tunes, Q,, < 0.5 and 1 — Q,,, for which the beam ellipse just touches
the inner side of the septum after one turn around the machine, satisfy the

equation
C(n + Vo) + {/C%, + §2/by = 11 — T, (40)

C =cos2wQ,, S =sin27xQ,. (41)

where

These are the tunes for which the largest number of turns can be injected
into the nth layer without loss on the septum. The number of turns



injected in this case is the largest integer in 1/Q,. The tunes obtained
from (40-41), and the corresponding number of turns are listed in Table I
for each phase space layer. Here we see that ¢, and 1 — ,, move away
from 0.5 as the closed orbit is moved away from the septum. In practice it
is not always possible to program the horizontal tune to achieve the
desired @, as the injection bump collapses. In this case one generally
keeps the tune fixed during the multiturn injection.

So far we have considered only conditions for which no beam is lost during
injection. If we allow some loss on the septum as beam is injected into a
given layer, then provided one has an ample supply of beam, it is possible,
with an appropriate choice of the tune, @, to inject more beam into the
layer than one could with no loss on the septum. Beam will be lost on the
septum on the mth turn after entering the machine if m is the smallest
integer (greater than or equal to one) for which equation (38) is satisfied.
The amount of beam lost on the septum is conveniently expressed in terms
of the parameter

g 1-T-Cln+Vh)

- JVCHh+ 5%

where C and S are given by (39). If d < —1 all beam is lost on the mth
turn; if d > 1 no beam is lost. In Appendix III it is shown that if

-1<d<1, (43)

(42)

the fraction, f, of beam lost on the septum on the mth turn is
f = (arccos |d| — |d|v/1 — d2)/x, (44)
for 0 <d< 1, and
f =1~ (arccos |d| — |d|v/1 — d2)/m, (45)

for —1 < d < 0. The fraction of the beam remaining in the beam ellipse
after the mth turn is then 1 — f.

Let us suppose that —1 < d < 1 and that after loosing beam on the mth
turn the beam ellipse goes another n turns around the machine before it
again looses beam on the septum. If the closed orbit is then moved away
from the septum, so that no more beam loss can occur, a total of m + n
turns will be injected into the layer, and m + (1 — f)n of these will survive.
The injection efficiency for the layer is then

_m+(1-f)n
e = — m""'—_—-—+ n .

(46)

9



Table III lists the values of m, n, and m + n — fn obtained for the case in
which 7 = 0.3, 5 = 0.3, and @ = 0.1.

Table III: Phase Space Layers with 7 = 0.3, b= 0.3
Layer (k) un bi Pk Qimln|m+tn—fn
1 0.30000 | 0.3 | 2.03053 | 0.1 | 1 |5 1.736
2 2.33053 | 0.3 | 3.52661 | 01| 1 | 7 3.369
3 3.82661 | 0.3 | 4.93564 0.1 | 1 |8 4.946
4 5.23564 | 0.3 | 6.33109 [ 0.1 1 |8 6.117
5 6.63109 | 0.3 | 7.72653 | 0.1 | 1 | 8 7.215
6 8.02653 | 0.3 | 9.12198 | 0.1 | 1 | 8 8.175
7 9.42198 | 0.3 | 10.51743 | 0.1 | 1 | 8 8.872
8 10.81743 | 0.3 { 11.91287 [ 0.1 |10 | O 10.000
9 12.21287 | 0.3 | 13.30832 { 0.1 {10 | O 10.000
10 13.60832 | 0.3 | 14.70376 | 0.1 [ 10 | O 10.000

3 Injection into the AGS Booster

3.1 The Electrostatic Inflector

The electrostatic inflector, described in Ref. 3, consists of a cathode and
thin septum which are separated by 17 mm. The septum is approximately
1 mm thick and its inner side is 47.5 mm from the unperturbed booster
orbit. (This is 2.5 mm outside the limiting aperture at this point.) The
parameter, z,, introduced in the section 2 is therefore 48.5 mm. Beam
entering the inflector from the HTB line follows a trjectory which is
nominally a circular arc of approximately 15 degrees centered halfway
between the cathode and septum. This brings the beam near the outside
edge of the booster acceptance region at the inflector exit where the
position and angle of the beam with respect to the unperturbed booster
orbit are 57.0 mm and 9.654 milliradians. The electrostatic field required
between the cathode and septum is approximately 35 kV/cm.

Although the inflector was designed so that beam would follow the
nominal trajectory halfway between the cathode and septum, we have
found in the previous sections that the beam should be as close to the
septum as possible and should have position and angle, z and zj,, given
by (29). In order to obtain the desired position and angle at the inflector
exit, two trim dipoles, 29TDH2 and 29TDH3, have been provided in the

10



HTB line. They are located respectively 13.44 and 1.60 meters upstream of
the inflector entrance and have integrated strengths of 6.10 x 10~¢ and
1.10 x 1072 T-m/A. The currents in these dipoles are not programable and
so ¢ and =, must remain constant during injection.

3.2 The Injection Bump

The four ferrite dipoles used to produce the injection bump in the AGS
Booster are located at C1, C3, C7, and D1. Each dipole has an integrated
strength of 1.33 x 10~° T-m/A (as reported in Ref. 4) and is powered by a
programable monopolar power supply. Table IV lists the machine lattice
parameters (Ref. 5) at the locations of the dipoles and at the exit of the

inflector for the case in which the horizontal tune is 4.8.

Table IV: Lattice Parameters
Location Y B(m) !
s; (C1) 0.054 | 4.889 0.878
s, (C3) 1.723 | 4.169 | —0.726
sr (Inflector Exit) | 2.143 | 10.96 | —1.736
s3 (C7) 3.816 | 4.819 0.845
34 (D1) 5.087 | 4.889 0.878

Using these values in equations (9-12) one can find the kick angles, ¢;,
required for various values of z. and z/. Rewriting the second of Eqs. (29)
as

2. + arz./Br = =y + arzo/Br, (47)

we see that since z¢ and z, are constant, =/ + ajz./B; must also be

constant. Since the power supplies are monopolar one must choose z. and
z/ so that the currents required in the dipoles do not pass through zero as
the injection bump collapses. This will be the case if, for each z., we choose

2.+ arz./f1 =0, (48)

where z, > 0 and the values of a; and B; are those listed in Table IV at
the inflector exit. Table V lists the values of ¢; required for various values
of z. and z/ which satisfy this condition. (The subscripts 1-4 refer to C1,
C3, C7, and D1 respectively.) The values of z. listed in the table are those
obtained from the first of Eqs. (36) with the values of 7,, given in Table II,
z, = 48.5 mm, B; = 10.96 meters, and € = 1.0 X 10~ meter radians.

11



Table V: Kick Angles (mrad) for Various z. and z/,

Mn z. (mm) | z; (mrad) | ¢y | ¢ | ¢3 &y
0.30000 47.5 7.52 5.96 | 3.49 | 6.71 | —0.70
2.33053 40.8 6.46 5.12 | 3.00 | 5.76 | —0.60
3.82661 35.8 5.67 4.49 | 2.64 | 5.06 | —0.52
5.23564 31.2 4.94 3.91 | 2.29 | 4.41 | —0.46
6.63109 26.5 4.20 3.32 | 1.95 | 3.74 | —-0.38
8.02653 21.9 3.47 2.74 | 1.61 | 3.09 | —0.32
9.42198 17.3 2.74 2.17 1 1.27 | 2.44 | —-0.25
10.81743 12.7 2.01 1.69 | 0.93 [ 1.79 | —0.19
12.21287 8.1 1.28 1.02 | 0.59 | 1.14 | —-0.12
13.60832 3.4 0.54 0.43 | 0.25 | 0.48 | —0.05

3.3 Survival of Beam Injected into the Booster

The limiting aperture, Ay, in the booster is 50.8 mm (2.0 inches) at the
horizontal beta max of 13.9 meters, and the incoming beam ellipse
nominally has an emittance of 17 mm milliradians (e = 1.0 x 10~ meter
radians). Using these numbers in (37) we find that p,, must be less than
13.6. For the ideal case in which the septum thickness is zero and the
beam ellipse parameters and tune are programed so that equations
(28-29), (33-34), and (40-41) are satisfied, Table I then shows that 14
phase space layers are possible and a total of 102 turns can be injected
without loss. For the case of injection into the booster, the parameter, b,
and the tune, @, are fixed, and since the septum is actually 1 mm thick
and B; = 10.96 meters, the parameter 7 is 0.3 for a 1 # mm mrad beam
ellipse. Figure 3 is a plot of the number of phase space layers possible
versus the value of b for the case in which 7 = 0.3 and the maximum p,, is
13.6. Here we see that one obtains the most layers when 0.1 < b < 0.3. In
order to keep the beam envelope from becoming too large in the last
quadrupole doublet of the HTB line, we choose b = 0.3. Table II lists the
layer parameters for this case, and Table V lists the corresponding
positions and angles of the bumped closed orbit at the inflector exit. Using
b= 0.3, oy = —1.736, and B; = 10.96 meters in (28) and (32) we find that
the beam ellipse parameters at the exit of the inflector must be

a = —0.521 and 8 = 3.29 meters.

Figure 4 is a plot of the total number of turns which survive injection with
no loss on the septum versus the fixed value of the horizontal tune for the

12



case in which b = 0.3, 7 = 0.3, and the maximum g, is 13.6. Figure 5
shows the same for the case in which 7 = 0.6. Since the plots are
cxretmateia abhnacd thn faceman /) — N E__ 14 Lo mbharn ~Af da tndisntad fan
B‘y 11CLLIu PUUL LT b < V — U.J i.€. i€ Numoer o1 turis ul.u.l\«ﬂl: W iUt

tune @ < 0.5 is equal to the number of turns for tune 1 — Q—only the
number of turns for tunes between 0 and 0.5 are shown. Both figures show
some rather narrow spikes and a number of flat regions where the number
of turns is independent of the tune. Since the tune may drift during
injection, it is desirable to choose a tune centered on one of the flat
regions. For the nominal horizontal tune of 4.8 in the Booster, the relevant
flat region is the one centered on @ = 0.2. Here one finds that 37 turns can
be injected without loss on the septum. Table II lists the number of turns
injected into each layer in this case. It may also be desirable to inject
heavy ions into the booster at a tune which is less than 4.5. If we choose a
tune of 4.4, then the relevant flat region is the one centered on 0.4 in
Figure 4. Here we see that 38 turns can be injected without loss on the
septum. Comparing figures 4 and 5 we see that increasing the septum
thickness substantially reduces the number of turns that can be injected
without loss on the septum.

Lo 1 et Sen Yo dl

rlgure 0 ls a plOU OI Eﬂe BOLa.l nulnuer Ol vurns wnicin SliIVjVe 111jectiion
versus the value of the fixed tune for the case in which beam is lost on the
septum (as described in section 2.3.2), b = 0.3, 7 = 0.3, and the maximum
Pn is 13.6. Here we see that the maximum survival occurs at a tune of
approximately 0.1, which corresponds to a horizontal tune of 4.9 in the
Booster. Figure 7 shows the total number of turns injected versus the fixed
tune under the same conditions, and Figure 8 is a plot of the injection
efficiency versus tune. Table IIT lists the number of turns injected and the

number survwmg for each layer when @ = 0.1. A total of 79 turns are

..... - +1.2 ] AL thana BN A crsnwiva Tha $adnl Jelacds o
ul_]cu;cu u.l. this case, aiia O1 these 60.4 survive. 1.1 vOvad 11jECLioni

efficiency is therefore 60.4/79 = 0.76.



4 Appendix I

Here we wish to find the conditions under which the ellipse defined by
equation (24) is the smallest such ellipse which contains the beam ellipse
defined by equations (19-20). To this end we define new coordinates

z=N(x—xc):(Z>, Z0=N(X0—XC)=(:§), (49)

where the transformation

_( UvBL 0 |
N= ( az/\/éf \/ﬂ_l) (50)

is such that the ellipse defined by equation (24) becomes a circle of radius
v/€1. In terms of the new coordinates the two ellipses become

(Z' - ZYFYZ - Zo)=¢, Z'Z =, (51)
where
F:NEN“:(_Z _Z), (52)
and
a=a—af/fr, b=p/B1, g=(1+a%)/b. (53)

These ellipses are shown in Figure Al. Using (49-50) and (52-53) in (51)
we find
g(u —uo)? + 2a(u — ug)(v — vo) + b(v - vo)2 = ¢, (54)

and
w4l = €1, (55)

where
v={(z—z)/VB, v=alz—=z)/VBi+VBi(e' —z.), (56)
uo = (%0 — zc)/VBI, vo = ar(zo— z.)/ VB + VBi(zh—zl). (57

In terms of the new coordinates, we wish to find the smallest circle (55)
which contains the transformed beam ellipse (54). Since this ellipse
occupies the region for which u > u,, where

U = (23 - zc)/\/ﬂ—lvv (58)
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it is clear from Figure A1 that in ord

ellipse should be upright—i.e.

r to make ¢; as small as pnsgih]p_ the

cl 2 1lahh© 1all 43 DOSJIDIC 5 vl

a=0, (59)
and should be centered such that
up = u, + Veb, v =0. (60)
In terms of the original coordinates and parameters these conditions
become
a = arf/Br, (61)
and
25 = 25 + ‘v/‘-—ﬂ.s g_-(,) - 1’:; = —O-I(zﬂ - Ec)/:—ﬂ-b (52)
Using (59-60) in (54), the equation for the beam ellipse becomes
b*v? = —1u? + 2u(u, + Veb) — u? — 2u,Veb, (63)
where
u, <u<u, + 2v/eb. (64)
Now, for each point (u,v) on the beam ellipse (63) let us calculate
¢; = u? + v?. Introducing dimensionless parameters
2 / I ] /o faen
pP=crle, m=1u,/ve, p=ule (65)
we find
8207 = (b7 — 1)p? + 2p(n + Vb) — n* ~ 29V/h, (66)
where
n<p<n+2vh (67)

The largest value of py/e obtained as p varies in the interval (67) is then
the radius of the smallest circle (55) which contains the transformed beam
ellipse (54). If the maximum p occurs for some u < 5 + 2v/b, then the
derivative of p? with respect to u will be zero at this point. Setting this
derivative equal to zero one finds

. 1+ by? + 26%/2p

Li1 E2Y)
v v }

\+
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If 5%/2(n + 2v/b) > 1, then the function p?(u) given by (66) is
monotonically increasing in the interval (67), and the maximum p?
therefore occurs when g = 7 + 2v/b. In this case the maximum pis

p =1+ 2vb. (70)

For fixed values of b and 7, these equations give the radius of the smallest
circle (55) which contains the transformed beam ellipse (54). If we allow b
to vary and examine the zeros of the derivative of equation (69) with
respect to b, we find that p? reaches a minimum of

1 4 3b2
2 __ LA .
T 4p3 (71)
when
1 - 362 = 2qb%/2, (72)
5 Appendix II
In terms of the new coordinates (49), the transfer matrix for m turns
around the machine is
Mg c S
R:NM,N‘:(_S c)’ (73)
where
C =cos2mrm@Q, S =sin2rmQ, (74)
M; is given by (18), and Q is the horizontal tune. After m turns, the
beam ellipse given by the first of equations (51) becomes
(ZIn - Z:‘)m)H“l(Zm - ZOm) =6 (75)
where
Zm:Rzz(um), zOm:Rz0:<u0m)1 (76)
Um Vom
and
B -4
— t
H—RFR_(_A G)' (77)
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Using (49), (52), (59-60), and (73) in (76) and (77) we find
Uom = C(us + \/G—b), Vom = —S(u, + \/f_b), (78)

and
A=SC(b-1/b), B=C%+ 5%, G=(1+A4%/B (79)

Now if m is the smallest integer (greater than or equal to 1) for which

Uom + \/ZE > ug — t/\/ﬂ_ly (80)

then beam will not be lost on the septum until the mth turn around the
machine and one can inject m turns before having to move the closed orbit. -
In terms of the dimensionless parameters (65), equation (80) becomes

C(n+ vb)++/C2%+52/b> 5 —, (81)

where 7 = t/\/€0].

6 Appendix III

Consider the ellipse
vz? + 2azz’ + Pz = ¢, (82)

and suppose that z > s, where 0 < s < v/¢f. Then the fraction of the
ellipse area for which = > s is given by

f = (arccos|d| — |d|\/1 — d?)/x, (83)

where d = s/+/ef. This result is obtained by transforming z and z’ to

coordinates for which the ellipse is a circle of radius /¢ and then applying
the formulae given in Ref. 6. For the case of the beam ellipse, the fraction
of the beam which is lost on the septum on the mth turn is then given by

(83)for0 <d<1land by 1 — f for —1 < d < 0, where

d = (uy — t//Br — tom)/VeB. (84)
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