DESIGN and ERROR ANALYSIS of the QUADRUPOLE PICK-UP COILS

A. Warner
May 1991
\section*{Collider Accelerator Department}
Brookhaven National Laboratory

U.S. Department of Energy
 USDOE Office of Science (SC)

[^0]
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DESIGN and ERROR ANALYSIS of the QUADRUPOLE PICK-UP COILS

BOOSTER TECHNICAL NOTE

 NO. 193A. WARNER

MAY 15, 1991

ALTERNATING GRADIENT SYNCHROTRON DEPARTMENT BROOKHAVEN NATIONAL LABORATORY

UPTON, NEW YORK 11973

Design and Error Analysis of the Quadrupole Pick-up Coils
 for use with the Booster Gauss Clock

Arden Warner

May 15, 1991

INTRODUCTION

Pickup coils for use with the booster quadrupole Gauss clocks ${ }^{1}$ have been designed and a detailed error analysis done. The coils of the basic Gauss clock unit will be mounted in the two booster quadrupole reference magnets No. QH25 and QV25 located in building 930 A . The coils will provide a voltage which is proportional to $\dot{\mathrm{B}}$. The number of coil windings and form dimensions have been chosen to produce 1 volt $/ 1 \mathrm{Tesla} / \mathrm{sec}$.

This report is divided into three parts. Part I describes the design and documents the calculation done to determine the form dimensions and the number of windings. In Part II a general formalism is developed for calculating errors and Part III looks at four types of possible errors; due to (1) Lateral motion of the coils (left-right), (2) the effect of a non-zero B_{3} term (sextupole term), (3) Errors due to rotation of the coils, and (4) errors due to differences in the coil width.

We shall adopt the nomenclature used in Tech note 174 by E. Bleser ${ }^{2}$.
The nomenclature is as follows:

$$
\begin{aligned}
& B_{y}(x)=B_{0}+B_{1} \bullet x+B_{2} \bullet x^{2}+B_{3} \bullet x^{3}+\ldots \ldots . . \\
& B_{z}(x)=A_{0}+A_{1} \bullet x+A_{2} \bullet x^{2}+A_{3} \bullet x^{3}+\ldots \ldots \ldots
\end{aligned}
$$

In a Quadrupole the only allowed terms are $B_{1}, B_{5} \ldots$ etc.

Part I

For each magnet a pair of coils are wound to lengths of 0.77 metres for the short quad, and 0.78 metres for the long quad, 0.3 metres beyond their magnetic lengths. The coils are wound on a form made of extren using \#30 (12 mil diameter) wire. The dimensions of the form are chosen to maximize the signal and to reduce the effects of higher order terms. Each pair of coils are set parallel to each other a fixed distance apart which is adjustable prior to mounting in the magnets. Once mounted and pinned into position in the beam pipes at some predetermined location equidistance from the magnetic center of the quadrupole, the signals from the coils are electrically summed and are dependent on $\dot{\mathbf{B}}$ and the coil characteristics.

Determining B (at 3.2 cm from Quadrupole Centre)

For a dipole of gap g

$$
B_{0}=\frac{0.4 \pi \times N I}{g}
$$

For Booster dipole $\mathrm{N}=16$ Turns
$\mathrm{g}=3.25$ inches $=0.08255 \mathrm{~m}$
I=current in amps.
For a quadrupole of radius $\mathbf{r}_{\mathbf{q}}$

$$
4 \pi \times N I=\int_{0}^{1} B_{1} r d r=\frac{B_{1} r_{q}^{2}}{2}
$$

Where $\quad B_{1}=$ gradient in Tesla $/ m$
$\mathbf{r}_{\mathbf{q}}=0.08255 \mathrm{~m}$ (for Booster)
$\mathrm{N}=5$ turns
$\mathrm{B}_{1} \mathrm{r}_{\mathrm{q}}=$ Tesla at pole tip

$$
\frac{B_{1}}{B_{0}}\left(m^{-1}\right)=\frac{0.4 \pi \times 10 I}{(0.08255 m)^{2}} \times \frac{0.08255 m}{0.4 \pi \times 16 I}=\frac{10}{16} \times \frac{1}{0.08255 m}
$$

For quadrupole coils at $\mathbf{r}=0.32 \mathrm{~m}$ from magnetic center.

$$
\frac{B_{1}}{B_{0}}=\frac{10}{16} \times \frac{3.2 \mathrm{~cm}}{3.25^{\prime \prime} \times 2.54 \mathrm{~cm}}=\frac{d B_{1}}{d t} / \frac{d B_{0}}{d t}
$$

The measured value of $\frac{d B_{0}}{d t}$ (dipole) is $9.5 \mathrm{~T} / \mathrm{sec}$

$$
\frac{d B_{1}}{d t}=9.5 \mathrm{~T} / \mathrm{sec} \times \frac{10}{16} \times \frac{0.32 \mathrm{~m}}{0.08255 \mathrm{~m}}=2.3 \mathrm{~T} / \mathrm{sec}
$$

The emf generated in the pickup coils is

$$
V_{\varphi}=\frac{d B_{1}}{d t} \cdot W_{q} N_{q} \cdot L_{\varphi} \times 2 \text { coils }
$$

where:

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{q}}=\text { coil width }(\mathrm{cm}) \\
& \mathrm{N}_{\mathrm{q}}=\# \text { \#f turns } \\
& \mathrm{L}_{\mathrm{q}}=\text { Length of coil }(\mathrm{cm}) \\
& \frac{\mathrm{dB}}{\mathrm{dt}}=\dot{B}_{1}(\mathrm{~T} / \mathrm{sec}) \\
& \mathrm{A}_{\mathrm{eff}}=\text { Effective Area }=\mathrm{W}_{\mathrm{q}} \times \mathrm{N}_{\mathrm{q}} \times \mathrm{L}_{\mathrm{q}}
\end{aligned}
$$

The form was designed to have an effective area of $7157.41 \mathrm{~cm}^{2}$ for the short Quadrupole and $7355.04 \mathrm{~cm}^{2}$ for the long quadrupole. The emf generated with these characteristics is 3.29 volts and 3.39 volts respectively, and after scaling to 1 volt/1Tesla/sec the number of windings where 49 and 48 . Fig. 2 shows the form dimensions.

Part II

General Formalism (for calculating errors)

In the above calculation I have assumed that the B1 term is dominant and that the other terms are small i.e.

$$
B_{5} x^{5} \ll B_{1} x
$$

let me explicitly show that this is the case and at the same time develop a general formalism for calculating errors.

The B that is used in the calculation is the average B over the area of the coil. So lets calculate Bavg. See Fig. 3.

Fig. 3.

$$
\begin{aligned}
& B=\sum B_{n} r^{n}=B_{0}+B_{1} r+B_{2} r^{2}+B_{3} r^{3}+\ldots . . \\
& B_{\text {avg }}=\frac{1}{2 w} \int_{r_{0}-w(\equiv A)}^{r_{0}+w(E B)}\left(\sum B_{n} r^{n}\right) d r \\
& =\left.\frac{1}{2 w} \sum B_{n} \frac{r^{n+1}}{n+1}\right|_{0-w} ^{r_{0}+w} \\
& =\sum \frac{B_{a}\left[\left(r_{0}+w\right)^{n+1}-\left(r_{0}-w\right)^{n+1}\right]}{2(n+1) w} \\
& =B_{0} \frac{\left(r_{0}+w\right)-\left(r_{0}-w\right)}{2 w}+B_{1} \frac{\left(r_{0}+w\right)^{2}-\left(r_{0}-w\right)^{2}}{4 w}+B_{2} \frac{\left(r_{0}+w\right)^{3}-\left(r_{0}-w\right)^{3}}{6 w}+B_{3} \frac{\left(r_{0}+w\right)^{4}-\left(r_{0}-w\right)^{4}}{8 w}+\ldots . .
\end{aligned}
$$

Similarly for coil 2

$$
\left.\begin{array}{l}
B_{o m}=\frac{1}{2 w} \int_{-r_{0}-w}^{-r_{0}^{+w}}\left(\sum B_{n} r^{n}\right) d r \text { etc.....(only the limits are different) } \\
B_{o m z}(\text { coil } 1)=B_{0}+B_{1} r_{0}+B_{2}\left(r_{0}^{2}+\frac{w^{2}}{3}\right)+B_{3}\left(r_{0}^{3}+r_{0} w^{2}\right)+\ldots \ldots \ldots . \\
\text { finite width correction }
\end{array}\right\} \begin{aligned}
& B_{o m}(\text { coil } 2)=B_{0}-B_{1} r_{0}+B_{2}\left(r_{0}^{2}+\frac{w^{2}}{3}\right)-B_{3}\left(r_{0}^{3}+r_{0} w^{2}\right)+\ldots
\end{aligned}
$$

Average
therefore the average B is:

$$
B_{1} r_{0}+B_{3}\left(r_{0}^{3}+r_{0} w^{2}\right)+\ldots \ldots .
$$

it is known from measurement that the higher order terms are small compared to B_{1}. See tech note 175 by E. Bleser ${ }^{3}$.

Part III

Error due to Lateral motion of the coil

Suppose the coil is not located at r_{0} but at $r_{0}+\varepsilon$ which could be the result of a temperature change or mechanical error, how does this affect our measurement?

$$
\begin{aligned}
& B_{o z}(\text { coil } 1)=B_{0}+B_{1}\left(r_{0}+\varepsilon\right)+B_{2}\left(\left(r_{0}+\varepsilon\right)^{2}+\frac{w^{2}}{3}\right)+B_{3}\left[\left(r_{0}+\varepsilon\right)^{3}+\left(r_{0}+\varepsilon\right) w^{2}\right]+\ldots \\
& B_{\text {ovz }}(\text { coil } 2)=B_{0}-B_{1}\left(r_{0}-\varepsilon\right)+B_{2}\left(\left(r_{0}-\varepsilon\right)^{2}+\frac{w^{2}}{3}\right)-B_{3}\left[\left(r_{0}-\varepsilon\right)^{3}+\left(r_{0}-\varepsilon\right) w^{2}\right]+\ldots
\end{aligned}
$$

Average $=0+B_{1} r_{0}+2 B_{2} \varepsilon r_{0}+B_{3}\left[r_{0}^{3}+3 \varepsilon^{2} r_{0}+r_{0} w^{2}\right]+\ldots$.

Relative change $=\frac{2 B_{2} r_{0} \varepsilon+3 B_{3} r_{0} \varepsilon^{2}}{B_{1} r_{0}+B_{3}\left(r_{0}^{3}+r_{0} w^{2}\right)} \begin{gathered}\left.\text { (what we get at }\left(r_{0}+\varepsilon\right)\right) \\ \left.\text { (what we get at }\left(r_{0}\right)\right)\end{gathered}$
Dividing by $B_{1} r_{0}$ we get

$$
\begin{aligned}
\text { Relative change } & =\frac{2\left(\frac{B_{2}}{B_{1}}\right) \varepsilon+3\left(\frac{B_{3}}{B_{1}}\right) \varepsilon^{2}}{1+\frac{B_{3}}{B_{1}}\left(r_{0}^{2}+w^{2}\right)} \\
& =\frac{2\left(\frac{B_{2}}{B_{1}}\right) \varepsilon+3\left(\frac{B_{3}}{B_{1}}\right) \varepsilon^{2}}{1+\left(\frac{B_{3}}{B_{1}}\right)_{0}^{2}\left(1+w^{2} / r_{0}^{2}\right)}
\end{aligned}
$$

The values of B_{3} / B_{1} and B_{2} / B_{1} are reported in tech note 175 by E. Bleser.
$\frac{B_{3}}{B_{1}}=1.20 E-07 \mathrm{~cm}^{-2}$ and $\frac{B_{2}}{B 1}=3.37 E-06 \mathrm{~cm}^{-1}$
relative change $\sim 2\left(\frac{B_{2}}{B_{1}}\right) \varepsilon$
terms with ε^{2} are very small and are neglected i.e. For $\varepsilon \sim 1 \mathrm{mil}=2.54 \times 10^{-3} \mathrm{~cm}, \varepsilon^{2} \sim 6-2 \times 10^{-6}$ relative change $\sim 2 \times-3.37 \times 10^{-6} \times 2.54 \times 10^{-3}$

$$
=1.6 \times 10^{-8} \sim 10^{-6} \%
$$

Error due to non zero B_{3} term

The field as it stands is given by:

$$
B_{1} r_{0}+B_{3}\left(r_{0}^{3}+r_{0} w^{2}\right)
$$

where we have set $B_{3}=0$ leaving us with $B_{1} r_{0}$. What is the effect are this B_{3} term? The change due to it $=B_{3}\left(r_{0}^{3}+r_{0} w^{2}\right)$
relative change $=\frac{B_{3}\left(r_{0}^{3}+r_{0} w^{2}\right)}{B_{1} r_{0}}=\left(\frac{B_{3}}{B_{1}}\right)\left(r_{0}^{2}+w^{2}\right)$
remember: $r_{0}=3.2 \mathrm{~cm}$ from magnetic center.
For $\mathbf{w}=1.2 \mathrm{~cm}$
relative change $=-1.20 \times 10^{-7}\left((3.2)^{2}+(1.2)^{2}\right)$
$=\quad-1.3 \times 10^{-6} \sim 1 \mathrm{ppm}$

Error due to rotation

Error due to rotation of one coil about an axis through its center. It is possible that one coil or even both coils are rotated in some way. This would introduce a cosine dependent component into one coil. i.e.
$\mathrm{B}_{\mathrm{n}}=\mathrm{B}_{\mathrm{n}} \cos \theta+\mathrm{A}_{\mathrm{n}} \sin \theta$
Assuming

$$
\begin{aligned}
& \left(\frac{2 \pi \theta}{360}\right)^{3} \ll 1 \\
& B_{n}=B_{n}\left[1-\left(\frac{2 \pi \theta}{360}\right)^{2}\right]+A_{n} \frac{2 \pi \theta}{360}
\end{aligned}
$$

The original Flux was $\mathrm{B}_{1} \mathrm{r}_{0}$
The actual flux is $\left.\left(B_{1}+A_{i} \frac{2 \pi \theta}{360}\right)\right)_{0}$
relative change $=\left(\frac{A_{1}}{B_{1}}\right) \frac{2 \pi \theta}{360}$

$$
\begin{aligned}
& =-7.4 \times 10^{-5} \frac{6.2}{360} \theta \\
& =-1.25 \times 10^{-6} \theta \sim 1 \mathrm{ppm} / \text { degree } .
\end{aligned}
$$

Error due to a difference in the width of the coils

As mentioned before, the emf generated in the coils are given by:
$B_{\text {avg }}($ coil 1$)=B_{0} w+B_{1} r_{0} w+\ldots$
$B_{\text {avg }}\left(\right.$ coil 2) $=B_{0} w-B_{1} r_{0} w+\ldots$.
Error $=\frac{B_{1} r_{0}(w+\varepsilon)-B_{r_{0}} w}{B_{1} r_{0} w}=\frac{\varepsilon}{w}=10^{-3}$ for 1 mil.

Part IV

Conclusion

The degree of confidence given by these calculations are based on the accuracy of the measured data reported. Since the quadrupoles are so very precise and are beating the allowed tolerances by a factor of five, any errors in the above calculations should be attributed to the author and not the data. Thanks to E. Bleser and G. Danby for pointing me in the right direction and reviewing my calculations, J. Geller, D. Mangra for the design work and help in understanding the Gauss clock.

References

1. J. Geller, A Digital Voltage to Frequency Converter for the Booster Gauss Clock, Booster Technical Note \#175, July 25, 1990.
2. E. Bleser, Short Ouadrupole Production Measurements, Booster Technical Note \#174, September 12, 1990.
3. E. Bleser, Booster Long Ouadrupole Production Measurements, Booster Technical Note \#176, September 13, 1990.

[^0]: Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

