BNL-105231-2014-TECH Booster Technical Note No. 187;BNL-105231-2014-IR # LAYOUT OF BOOSTER RING VACUUM COMPONENTS # A. Arno January 1991 Collider Accelerator Department Brookhaven National Laboratory **U.S. Department of Energy** USDOE Office of Science (SC) Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes. # **DISCLAIMER** This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. # LAYOUT OF BOOSTER RING VACUUM COMPONENTS # BOOSTER TECHNICAL NOTE NO. 187 A. ARNO, E. EMMERICH, H.C. HSEUH and M. MAPES JANUARY 2, 1991 ALTERNATING GRADIENT SYNCHROTRON DEPARTMENT BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK 11973 #### LAYOUT OF BOOSTER RING VACUUM COMPONENTS ## A. Arno, E. Emmerich, H.C. Hseuh and M. Mapes #### **Abstract** The purpose of this note is to serve as an information consolidator on the vacuum mechanical components, including chambers, flanges, pumps, gauges, valves... This information will help during the commissioning of the machine. We will update this note when all the components are installed and no major changes are expected. # **Introduction** The Booster ring consists of 36 half cells and 12 quarter cells. To accommodate various beam components at short straight sections(at beginning of halfcells) and long straight sections(the missing dipole down stream of quarter cells), modifications to the standard chamber length and mating flanges are necessary. As it stands now, there are nine(9) types of halfcell chambers(named H1 to H9) and seven(7) types of quartercell chambers(named Q1 to Q7). The description and location of these chambers are given in the following sections. The ring vacuum system is isolable into seven(7) sectors with the all metal gate valves. The locations of pumps, gauges and roughing valves in each sector and are also summarized here. ## Halfcell Chambers: The standard halfcell chambers(H1), as shown schematically in Fig. 1, consists of dipole, quadrupole, PUE, sextupole, bellows and a tee for pump connection. In the modified ones, the short straight sections with missing tee are usually occupied by gate valves(H5), kickers(H5,H8), septum(H9) and RF cavities(H2). Other modifications to the halfcell chambers are mating flanges(H3,H7) and dipole chamber extensions(H4,H6). The standard flanges are 10" Conflat type. Conflat of 8", 14 1/4" O.D., and Marman flanges with similar knife edge are also used. The detail of these chambers are given as following | Туре | Drawing#
D36-M- | Flange
U/S | D/S | Tee | Length* (inch) | Comment/Location | |------|--------------------|---------------|---------|-----|----------------|---| | H1 | 1485- 5 | 10"R | 10"NR | Yes | 164.988 | A8,B5,B7,D2,D4,D5,D7,D8
E1,E2,E4,E5,E8,F1,F2,F5,F8 | | H2 | 1513- 5 | 10"NR | . 10"NR | No | 156.488 | A4,A7,B4,E7 (D/S of cavities) | | H3 | 1485- 5 | 0"R | 14"NR | Yes | 165.247 | B8,C8 (U/S of inj. kickers) | | H4 | 1271- 4 | 10"R | 10"NR | Yes | 164.988 | C5 (Y-dipole chamber for P inj.) also see H1 for assembly | | H5 | 1512- 5 | 10"R | 10"NR | No | 156.488 | A2,B2,F4 | | H6 | 1568- 5 | 10"R | 10"NR | Yes | 168.038 | A1,B1,C2 | | H7 | 1749- 5 | M^{**} | 10"NR | Yes | 164.233 | F7 | | H8 | 1546- 5 | 10"R | 10"NR | No | 156.252 | C1,C7,D1 (w/ shorter bellows) | | H9 | 2107- 5 | 14"R | 10"NR | No | 151.660 | C4 | ^{*}length given is cord length measured from flange center to flange center. ^{**}F7 has special Tee, pump body and offset 9" Marman flange mating to septum flange. # **Quartercell Chambers** There are seven(7) types of chambers out of the twelve quarter cells. They usually consist of chambers for quadrupole, PUE, sextupole, bellows and a tee. Similar to halfcell chambers, the variation in quartercell chambers are in the missing tees and the mating flanges. The chambers upstream of dump(D6) and extraction septum(F6) have ears to accommodate the larger sagitta required by the kicked beam; no PUEs are installed there. | Type | Drawing# | Flang | e | Tee | Length* | Comment/Location | |------|----------|-------|-------|-----|---------|--------------------------------| | • • | D36-M- | U/S | D/S | | (inch) | · | | Q1 | 1603-5 | 10"R | 8"NR | Yes | 60.013 | A6,E6 (U/S of Band 3 cavities) | | Q2 | 2007-5 | 10"R | *** | Yes | 56.007 | F6(U/S) of Extraction Septum) | | Q3 | 1604-5 | 10"R | 10"R | No | 51.887 | C3` | | Q4 | 1609-5 | 10"R | 10"R | Yes | 60.387 | B3,D3,E3,F3 | | Q5 | 2000-5 | 10"R | Evac | Yes | 61.037 | D6 (U/S of Beam Dump) | | Q6 | 1606-5 | 10"R | 10"NR | No | 51.525 | C6 ` | | Q7 | 1603-5 | 10"R | 8"R | Yes | 60.013 | A3,B3 (U/S of Band 2 cavities) | ^{***}F6 quarter cell D/S has a special 13" Marman flange. # **Beam Components** The name, locations and approximate length of various beam components are given below. All these beam components, with the exception of C1, C7, D1 inj. kickers and C6 stripper foil, occupy the long straight sections. The length given is from flange to flange excluding the additional bellowed spool pieces required upstream or downstream of the beam components. | Name | Location | Approx. Length (inch) | Assy. Drawing#
D36-M- | |---------------------------------|----------------------------|-----------------------|--------------------------| | RF Cavity
Inj. Kicker | A3,A6,B3,E6
C1,C3,C7,D1 | 114.0
8.76 | 0950-5
1327-5 | | Inflector | C3 | 98.375 | 2322-5 | | Stripper Foil Graphite Absorber | · C6
· C6 | 9.0
15.5 | 1350-5
1972-5/2006-5 | | Current Xmer | C6 | 30.0 | 1808-5/2006-5 | | Dump Kicker | D3 | 48.0 | 2298-5/2203-5 | | IPM - | D3 | 47.75 | 2287-5 | | Dump | D6 | 52.0 | 2004-5 | | WCM | D6,E3 | 11.75 | 2335-5/2385-5 | | Tune Kicker | E3 | 23.625 | 2045-5/2385-5 | | Damper Kicker | E3 | 30.0 | 2488-5/2385-5 | | Damper PUEs | E3 | 30.0 | 2090-5/2385-5 | | Ext. Kicker | F3 | 108.15 | 2208-5/2740-5 | | Ext. Septum | F6 | 108.5 | 1263-5 | # **Other Vacuum Equipments** The attached table gives the locations of valves, pumps and gauges. Each vacuum sector has one large ion pump(100 l/s), one Convectron tube, one RGA head, several small(20 l/s) ion pumps, titanium sublimation pumps and ion gauges. They are mounted off the "Tee" of the halfcell/quartercell chambers or on the beam component chambers. # **Spare Consideration** A limited number of spare vacuum components are available, such as dipole chambers and bellows. The large number of chamber types prohibits us to make whole assemblies. The period for making up a particular chamber assembly is estimated to be more than two weeks assuming every components and facilities are available. We will publish a list of available spare components later. | | T | ABLE I. | LOCATION O | F BOOSTER R | ING VACUUM C | OMPONENTS | | | |---------------------------|---------|--|--|--|---|---|---|---| | | SECTOR | Α | В | С | CD | D | E | F | | | SECTOR | VALVE | | | | | | | | | VS | VS_A2 | VS_B2 | VS_C3 | VS_C6 | VS_D3 | VS_E3 | VS_F3 | | | CONVECT | RON GAUGE | : | | | | | | | | GTC | GTC_A6 | GTC_B6 | GTC_C3 | GTC_C8 | GTC_D3 | GTC_E3 | GTC_F3 | | | ION GAU | GE | | | | | | | | | GI | GI_A3
GI_A5
GI_A6
GI_A8
GI_B1 | GI_B3
GI_B5
GI_B6
GI_B7
GI_B8
GI_C1
GI_C2 | GI_C3A
GI_C3B
GI_C5
GI_C6 | GI_C7
GI_C8
GI_D1
GI_D2
GI_D3A | GI_D3B
GI_D4
GI_D5
GI_D6
GI_D7
GI_D8
GI_E1
GI_E2
GI_E3A | GI_E3B
GI_E4
GI_E5
GI_E6
GI_E8
GI_F1
GI_F2
GI_F3A | GI_F3B
GI_F5
GI_F6
GI_F7
GI_F8
GI_A1 | | | SPUTTER | ION PUMF | P(PI = 20 | l/s; PIL = ' | 100 l/s) | | | | | | | PI_A3
PIL_A5A
PI_A5B
PI_A8
PI_B1 | PI_B3
PI_B5
PI_B6A
PIL_B6B
PI_B7
PI_B8
PI_C1
PI_C2 | PI_C3A
PIL_C3B
PI_C5
PI_C6A
PI_C6B | PI_C7
PIL_D1
PI_D2
PI_D3A | PIL_D3B
PI_D4
PI_D5
PI_D6
PI_D7
PI_D8
PI_E1
PI_E2
PI_E3A | PIL_E3B
PI_E3C
PI_E4
PI_E5
PI_E6
PI_E8
PI_F1
PI_F2
PI_F3A | PIL_F3B
PI_F3C
PI_F5
PI_F6
PI_F7
PI_F8
PI_A1 | | TITANIUM SUBLIMATION PUMP | | | | | | | | | | | PTS | PTS_A3
PTS_A5
PTS_A6
PTS_A8
PTS_B1 | PTS_B3
PTS_B5
PTS_B6A
PTS_B6B
PTS_B7
PTS_B8
PTS_C1A
PTS_C1B
PTS_C2 | PTS_C3A PTS_C3B PTS_C3C PTS_C5 PTS_C6A PTS_C6B | PTS_C7A
PTS_C7B
PTS_C8
PTS_D1
PTS_D2
PTS_D3A | PTS_D3B
PTS_D3C
PTS_D4
PTS_D5
PTS_D6
PTS_D7
PTS_D8
PTS_E1
PTS_E2
PTS_E3A | PTS_E3B
PTS_E4
PTS_E5
PTS_E6
PTS_E8
PTS_F1
PTS_F2
PTS_F3A | PTS_F3B
PTS_F3C
PTS_F3D
PTS_F5
PTS_F6
PTS_F7
PTS_F8
PTS_A1 | | | RESIDUA | L GAS ANA | ALYZER HEAD | | | | | | | | RGA | RGA_A5 | RGA_B6 | RGA_C3 | RGA_C8 | RGA_D3 | RGA_E3 | RGA_F8 | | | MANUAL | ROUGHING | VALVE | | | | | | | | VR | A3,A6 | B3,B6 | C3,C6 | C7,D1 | D3,E1 | E3,F1 | F3,A1 | | | RS232 C | ABLE HOOK | CUP FOR TURI | BOPUMP GAUGE | CONTROLLER | | | | | | TURBO | A6 | В6 | С3 | D1 | D3 | E3 | A1 | | | RS422 C | ABLE HOOK | CUP FOR PLC | CART | | | | | | | PLC | A7 | в7 | C4 | D2 | D4 | E5 | A1 |