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1 Abstract 

Following is the development of some formulae useful in determining the 
effectiveness of various configurations of correction elements used to 
eliminate components of imperfections which can excite certain transverse 
resonances. Specifically, formulae for the correction of the 2Qx = p ,  
2Qy = p ,  3Qn = p ,  Qz + 2QY = p ,  3QY = p ,  2Qx + Qy = p ,  resonances are 
developed and applied to the AGS and to the Booster. 

2 Excitation Coefficients 

In the papers of G. Guignard [1,2,3] on the theory of sum and difference 
resonances, it is shown that if the tunes are near a particular resonance 
then this resonance will be excited whenever the excitation coefficient, K, is 
nonzero. 

2.1 Resonances 2Qn = p and 2Qy = p 

For the 2Qx = p and 2Qy = p resonances the excitation coefficients are 
respectively 

1 



where, 2nr is the circumference of the Equilibrium Orbit (E.O.), s = rtJ is 
the distance along the 33.0. measured from a fixed reference point, 

is proportional to the quadrupole strength on the E.O. (z = 0, y = 0) and 
inversely proportional to the momentum, P ,  

are the betatron phase advances, 

1 c = -  
8nr ' ( 5 )  

and Qx and Q y  are the unperturbed horizontal and vertical tunes. These 
resonances can produce unlimited growth in the amplitudes of the 
betatron oscillations whenever the tunes are such that 

where, 
w = 4r IK.x,yl 

is the stopband width. 
(7) 

2.2 Resonances 3Qx = p and Qx + 2Qy = p 

For the 3 Q x  = p and Q x  + 2Q,  = p resonances the excitation coefficients 
are respectively 

where, 

is Proportional to the sextupole strength on the E O . ,  

$'x = 3Px + (P- 3Qx)tJ, $xv = /1x t 2/13, + ( p  - Q z  - 2Q3,)tJ, 
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The stopband widths for these resonances are 

where E,, ey are the initial emittances. 

2.3 Resonances 3Qy = p and 2Qx + QY = p 

The excitation coefficients and stopband widths for the 3Qy = p and 
2Qx + Qy = p resonances may be obtained from equations (8), (lo),  and 
(12-13) by interchanging a: and y and replacing k ( s )  with 

which is proportional to the skew sextupole strength on the E.O. 

2.4 Comments 

Careful inspection of the equations for the excitatioli coefficients, IC, shows 
that each IC is essentially proportional to the pth harmonic in the 
azimuthal variation of k(s )  around the machine. The real and imaginary 
parts of K, are then the cos and s in  components of this harmonic. The 
resonances discussed in sections 2.1-2.3 are therefore excited by the pth 
harmonic in the azimuthal variations of the quadrupole, sextupole, and 
skew sextupole fields around the machine. 

Gaussian units (cm, gram, second, erg, gauss, statcoulomb) are employed 
in the equations for k ( s )  given in sections 2.1-2.3. Thus if the momentum, 
P ,  is expressed in eV/c then c P / e  = 3335.641 gauss-cm per MeV, or 
c P / e  = 3.335641 tesla-m per GeV. 
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3 Correction Schemes 

Any naturally occuring fields in the machine, or fields due to 
imperfections, which produce nonzero values of the excitation coefficients, 
K ,  can excite resonances resulting in beam loss. We call each K. produced 
by these fields an intrinsic excitation coefficient of the machine and denote 
it by KO. To cancel each K O ,  so that the resonances can not be excited, 
correction elements located at various positions, s j ,  in the ring are excited 
with currents, Ij, in such a way that they produce a K equal to -60. When 
this is done we say that the resonances have been corrected. 

3.1 Correction of resonances 2Qx = p and 2Qy = p 

Suppose there are N identical correction quadrupoles located at positions, 
s j ,  and excited with currents Ij. If the integrated strength of each 
quadrupole is Q gauss/amp, then the set of quadrupoles will produce 
excitation coefficients 

in which 
P x j  = P x ( s j ) ,  

7c1xj = 2 P x (  s j )  -t ( P  - 2 Q x ) O j ,  
P y j  = P y ( s j ) ,  

lclyj = 2~y(sj) -t ( P  - 2 Q y ) e j )  

and equations (1-4) have been employed in the thin lens approximation. 
Generally it is necessary to correct both resonances simultaneously since 
some particles in the beam may be near the 2Qx = p resonance while 
others are near the 2Qy = p resonance. This is especially true near 
injection where the beam is spread over a large region of tune space due to 
space charge detuning. In general, then, the positions, s j ,  of the 
quadrupoles must be chosen so that it is always possible to find a set of 
currents, Ij, which produce the values of tcX and K~ required to correct both 
resonances at the same time. Since each IC, has a real and an imaginary 
part, we see from equations (15) that four correction elements are needed. 

3.1.1 Correction of one resonance only 

Before considering the general case let us consider the special case in which 
it is necessary to correct only one of the resonances, say 2Qz = p .  Then 
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only two correction elements are needed, and taking N = 2 the f i s t  of 
equations (15) becomes 

where C X  and S X  are respectively the cos (real) and sin (imaginary) 
parts of R,, Cj = cos(+,j), and Sj = sin(+,j). Solving for I1 and 12 we 

where Si2 = C1Sz - SiCz = sin($,z - +,I). Here we see that the amount 
of current required to produce a given R, is proportional to l/Slz which 
becomes infinite whenever the phase difference, +,z - qZl, is an integral 
multiple of x. If we define 

4 o j  = 4 z ( s j )  = r ~ z ( ~ j ) / Q = c ,  4 y j  = 4 y ( s j )  = Py(Sj)/Qy (18) 

then near the 2Qx = p resonance the phase difference 

+CIS2 - + Z l  = P4,(sa) - P 4 , ( S l )  = P(#d - 4x1). 

Thus the effectiveness of the currents, I1 and I z ,  in producing the desired 
corrections is proportional to JSlzl = Isin(p4,z - pq5,l)I and we see that 
one must avoid positions for which p(&2 - +,I) is an integral multiple of 
R .  The optimum positions-i.e, those for which the least amount of 
current is required to produce the desired corrections-are those for which 
p(&z - $,I) is an odd multiple of x / 2 ,  and P,l and /3,2 are beta 
maximums. 

3.12 Correction of both resonances simultaneously 

Let us now return to the general problem of correcting both resonances 
simultaneously. In this case four correction elements are needed, and with 
N = 4 equations (15) become 

= c (5) M ( 4j (9 I4 
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where, 

(20) I M =  [ PXISX1 Px2Sx2 PX3SX3 Px4Sx4 , 
PXICXI Px2Cx2 Px3Cx3 Px4Cx4 

-PylCyl  -Py2Cy2 -Py3Cy3 -Py4Cy4 

-PylSyl  -Py2Sy2 -Py3Sy3 -Py4Sy4 

C X  and S X  are the cos and sin parts of IG,, CY and SY  are the cos and 
sin parts Of ", C x j  = COs('$xj), S x j  = sin($xj), C y j  =  COS(+^^), and 
S y j  = ~ i n ( + ~ j ) .  The currents which produce the desired corrections are 
then 

Here we see that the effectiveness of the correctors in producing the 
desired corrections depends on the inverse of the matrix M which is, in 
general, rather complicated. However, if one makes some assumptions 
about the machine lattice and the placement of the correctors, then both 
M and its inverse become much simpler. The determination of the 
effectiveness of the correctors then becomes rather straight forward. The 
conditions under which the following simplifing assumptions are valid will 
be discussed in section 3.4. 
In the previous section we found that the 2Q, = p resonance is most 
effectively corrected when the two correction elements are located at 
horizontal beta maximums. Thus, if we wish also to correct the 2QY = p 
resonance, two correction elements should be placed at vertical beta 
maximums. We therefore take positions s 1  and 92 to be vertical beta 
maximums and positions s 3  and s4 to be horizontal beta maximums. We 
shall also take s1 = 0 and assume that 

where &(Sj) and 4 y ( s j )  are the normalized betatron phase advances 
defined in equations (18). Then near the resonances we have 

and therefore 
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We shall also assume that 

P y l  = P y a  = B ,  P y 3  = Py4  = b,  

where (a ,  b )  and ( A ,  B )  are respectively values of beta minima and beta 
maxima in the machine lattice. With these assumptions the matrix, M, 
becomes 

we then have 

e 

where 

M = (  - B m  am -bn ” ” ) = (  - B  a -b ’)(: :), (23) 

$4 -c4 1 1 s2 4 2  

m-l = 3G ( -SI c, ) = ( -so c3 ) 
S12 = CIS2 - SIC, = sin(p42 - p&) ,  

S34 = C3S4 - S3C4 = sin(pq54 - ~ 4 ~ ) .  
Putting (24) into (21) we obtain 

( -;: -2 ) ( b C X f A C Y  ) ( A B  - ab)Slz b S X f A S Y  ’ (25) 
-9 

9 (:)= (AB - ab)Sse BSX + aSY 
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where 
1 cp 

g = c (.Q) 
Here we see that the effectiveness of currents I1 and Iz in producing the 
desired corrections is proportional to ISlz/ = Isin(p$z - p&)I. Likewise the 
effectiveness of currents Is and 14 is proportional to 
IS341 = /sin(p& - 
p(bz - 41) or ~ ( $ 4  - $3) is an integral multiple of T must be avoided. The 
optimum positions are those for which p(42  - 41) and p ( 4 4  - 4 3 )  are odd 
multiples of 7r/2. We also see that the effectiveness of the currents is 
proportional to AB - ab, which is zero when AB = ab. This is consistent 
with our earlier assumption. that two correction elements should be placed 
at horizontal beta maximums and two at vertical beta maximums. 

Thus, corrector positions for which either 

3.2 Correction of resonances 3Qx = p and Qx + 2Qy = p 

As in section 3.1 we suppose that there are N identical correction 
elements-sextupoles in this case-located at positions, sj) and excited 
with currents Ij. If the integrated strength of each sextupole is S gauss/cm 
per amp, then the set of sextupoles will produce excitation coefficients 

and equations (8-11) have been employed in the thin lens approximation. 
As with the half-integer resonances it is generally necessary to correct the 
3Qx = p and Q x  + 2Qy = p resonances simultaneously. Since each IG has a 
real and an imaginary part we see from equations (26) that four correction 
elements are needed. Taking N = 4 equations (26) become 

(E) = c u , - (  I4  
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where 

M =  

C X  and S X  are the cos and sin parts of K.,, CY and SY are the cos and 
sin parts of ~ . , ~ / 3 ,  Cxj = COS(+xj), S x j  = sin(.rGlXj), Cyj =  COS(+^^), and 
S y j  = sin(+yj). The currents which produce the desired corrections are 
then 

C X  
1 CP 

( ' )= - ( - )M- ' (  I4 I3 C eS E]. (29) 

We now make some assumptions, as before, which simplify the form of M 
and make the determination of the effectiveness of a given set of correction 
elements straight forward. The conditions under which these assumptions 
are valid will be discussed in section 3.4. As in section 3.1.2 we take 
positions s1 and s2 to be vertical beta maximums and positions s3 and s4 
to be horizontal beta maximums. We also take s1 = 0 and assume that 

where g),(sj) and $,(sj) are the normalized betatron phase advances 
defined in equations (18). Then near the resonances we have 

+xj = +yj  = &j 

and therefore 

c . = c  y3 - . -c . -  3 - cOs(p#j), S x j  = S y j  = Sj = sin(p$j). 03 

We also assume that 

Pol = Px2 = a, Px3 = P m 4  = A, 

Pyl  = Py2 = B ,  Py3  = Py4 = b ,  
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where ( a ,  b )  and ( A ,  B )  are respectively values of beta minima and beta 
maxima in the machine lattice. With these assumptions the matrix, M, 
becomes 

- (30) 

a3J2 c1 a3/2C2 A3I2C3 A3I2C4 
a3J2 s1 a3/2S2 A3J2S3 A3I2S4 

-a112BC1 -a1/'BC2 -A1J2bC3 -A1I2bC4 
-a112BS1 -a112BS2 -A112bS3 -A1I2bS4 

M =  [ 

we then have 

and 

where 

,-I - _. 1 s2 - 4 2  -1 1 s 4  4 4  

S I 2  ( -s1 (71)' = iG ( -s3 c3) ' 
- 

s 1 2  = ClSZ - SlC2 = 4 p 4 2  - P h ) ,  

,934 = C3S4 - S3C4 = sin(p44 - ~ 4 3 ) .  

Putting (32) into (29) we obtain 

-9 ( s2 -2 ) ( bCX + ) , (33) (:)= a112(AB - ab)Slz -si bSX + ASY 

where 
g = ;  ($) * 
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Here we see, as before, that the effectiveness of currents 11 and I2 in 
producing the desired corrections is proportional to 
IS12l = Isin(p$~ - p $ ~ ) ( .  Likewise the effectiveness of currents I3 and 4 is 
proportional to 15’341 = /sin(p& - p43)1. Corrector positions for which 
either ~ ( $ 2  - 41) or p(44  - 4 3 )  is an integral multiple of 7r must therefore 
be avoided. The optimum positions are those for which ~ ( $ 2  - $1) and 
p ( 4 4  - $3) are odd multiples of n/2. We also see that the effectiveness of 
the currents is proportional to AB - ab, which is zero when AB = ab. This 
is consistent with our assumption that two correction elements should be 
placed at horizontal beta maximums and two at vertical beta maximums. 

3.3 Correction of resonances 3Q, = p and ZQz  + Q, = p 

The formulae for the correction of the 3Qy = p and 2Qz + Q, = p 
resonances may be obtained from the formulae of section 3.2 by 
interchanging e and y and replacing the sextupole strength with the skew 
sextupole strength. 

3.4 Comments 

We have seen in sections 3.1 and 3.2 that by making some assumptions 
about the machine lattice and the placement of correction elements, the 
task of determining the effectiveness of a given set of correctors becomes 
rather straight forward. Here we discuss the conditions under which these 
assumptions are valid. 

Consider first the case in which the lattice is composed of N identical 
FODO cells, and let 4z = pz/Qz and $, = p,/Q, be the normalized 
betatron phase advances in the e and y planes between two horizontal beta 
maximums, two vertical beta minimums, or between a beta minimum and 
a beta maximurn. Then in each case $= = I&. Furthermore any two 
horizontal beta maximums (or minimums) in the lattice are equal, any two 
vertical beta maximums (or minimums) are equal, and the beta maximums 
in one plane occur at the same locations as the beta minimums in the 
opposite plane. Thus, if two correction elements are placed at horizontal 
beta maximums and two at vertical beta maximums, then all of the 
assumptions made in sections 3.1 and 3.2 are valid. 

Now in general not all of the FODO cells in an AGS lattice are identical. 
However there are usually symmetries which imply that the assumptions 
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made in sections 3.1 and 3.2 are valid for some set of points in the lattice. 
In each superperiod of the Brookhaven AGS, for example, we have 

P x ( s 5  - t ,  = Px(95  f t )  = Py(s15 - E) = P y ( s l 5  f t ) ,  (34) 

P y ( %  - t ,  = p y ( s 5  f t )  = Px(s15 - t )  = Px(s15  + t ) ,  
and 

4x(s15  f t )  - d ' ~ ( ~ 1 5  - t ,  = 4 y ( s 5  t t )  - 4 ~ ( ~ 5  - t ) ,  (35) 

4 x ( %  f t ,  - # ~ ( ~ 5  - t )  = $y(% f t )  - #y(s15 - t ) ,  

4x(s15  - t )  - (bx(Q5 + t )  = (by(s16 - t )  - 4 y ( s 5  + t ) ,  
where s 5  and 815 are respectively the distances from the beginning of a 
superperiod to the middle of the number 5 and number 15 straight 
sections, 0 < t < 85, and q5x and 4, are the normalized betatron phase 
advances defined in equation (18). Adding equations (35) we have also 

4x(s15  f t )  - #x(S5 - t )  = $y(s15 + t )  - 46y(95 - t ) .  (36) 

Thus in each superperiod we have 

Pyl = Py9 = P x l l  = Px19, 

pz5 = PylS ,  

Py3 

Py6 = Pz15, 

Py7 = Px13 = Px17, 

and 
4x19 - 4 x 1  = 4y19 - d y l ,  (bo17 - 4 x 3  = (by17 - 493 , (38) 

4x15 - 4 x 5  = d y l 5  - 4y5,  4x13 - 4 x 7  = 4y13 - #y7, 

4x11 - 4 x 9  = (by11 - 4y9,  

where the numbers 1-19 correspond to straight sections 1-19, (Note that 
beta minima and maxima occur only in the odd numbered straight 
sections of the AGS). It is, of course, also true that Pxl = Px2,  PYl = Pya, 
and 4 x 2  - 
more superperiods in the AGS. 
The assumptions of sections 3.1 and 3.2 are therefore valid if two 
correction elements are placed in any one pair of the following pairs of 
straight sections: (1,19), (3,17), (5,15), (7,13), (9,11), and another two are 
placed in the same straight sections of another superperiod. 

= 175~2 - 4yl for any two points, 1 and 2, separated by one or 
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In addition to the relations (34-38), which are nearly exact, we have the 
following approximate relations due to the shortening of magnets 1, 2, 9, 
10, 11, 12, 19, and 20 in each superperiod [4]: 

px5 Px9 73 Px13, py5 F3 Py9 73 Py13, (39) 

Po7 PZ Poll par152 py7 pyll py15- 

It follows that the five FODO cells in each superperiod are approximately 
equivalent so that the results stated above for the case of a lattice 
composed of identical PODO cells are approximately true. Thus, if 
correctors are placed at any two horizontal beta maximums and at any two 
vertical beta maximums in the AGS, then the assumptions of sections 
3.1-3.2 are always at least approximately valid and one may use the 
formulae developed in these sections to estimate the effectiveness of the 
correctors. 

In the AGS Booster each of the six superperiods is composed of four 
FODO cells which are to first order identical. Therefore, if one places 
correctors at any two horizontal beta maximums and at any two vertical 
beta maximums in the booster lattice, the assumptions of sections 3.1-3.2 
are valid. 

4 Application to the AGS 

The correction schemes discussed in the following sections (4.1-4.3) were 
first worked out by E. Raka [5,6]. We re-derive his results here using the 
formulae developed in section 3. 

4.1 Correction of resonances 2Qx = 17 and 2Qy = 17 

In Raka’s scheme for the correction of these resonances one first considers 
four correction quadrupoles located in the C3, F3, C17, and F17 straight 
sections. We shall take positions 91, 9 2 ,  93, s4 to be the locations of the 
quads in straight sections C3, F3, C17, and F17 respectively, with SI = 0. 
Then using equations (34-36) and the superperiod symmetry we have 

and 
$1 = #X(C3) = #y(C3) = 0, $2 = $X(F3) = $,(F3), (41) 
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c 'r 

4 3  = 4Z(Cl7) = 4y(C17), 4 4  = 4Z(J717) = 4y(F17). 
Now the normalized betatron phase advance between two points separated 
by three superperiods in the AGS is n/2, and the normalized phase 
advance between the number 3 and number 17 straight sections of a 
superperiod is very nearly 2n/17. Thus we have 

2n n 2n 
2 17 41 = 0, 4 2  = 1 4 3  = --' 4 4 = - + - .  2 '  

Using (40-42) and p = 17 in the equations of section 3.1.2 we find that the 
excitation coefficients produced by the four correctors are 

ML1 = 1 ( -; -:) ( :) R =  B/b. (45) b(R2 - 1) 

Now, to insure that the correction scheme does not introduce any 96' 
harmonic components, additional quadrupoles at E3, H3, E17, H17 are 
excited with the same currents as the quads at C3, F3, C17, F17 
respectively. Since the additional quads are two superperiods away from 
the fist set of quads, we have 

PZdE3) = PZ,YW3)> PZ,Y(H3) = PZ,Y(F3)' 

PS,Y(E17) = PZ,Y(C17), PZ,Y(H17) = Pz,y(F17)7 
4Z(E3) = 4 0 3 )  = 41 + w ,  +Z(H3) = 4y(H3) = 4 2  + w ,  

b(E17) = 4y(E17) = 4 3  + w ,  &(H17) = 4,(H17) = 44 + w ,  
where 41-44 are given by (42)' and w = n/3 is the normalized betatron 
phase advance for two superperiods. The excitation coefficients produced 
by the additional quads are therefore 
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where 

, (pw = 17n/3). (47) 
cos(pw) -sin@) 

The excitation coefficients produced by both sets of quadrupoles are given 
by the sum of equations (43) and (46). 

In addition to insuring that no 98 harmonic components are introduced by 
the correction scheme it is necessary to insure that no 08 components are 
introduced. (Any 08 components would alter the machine tunes). This is 
accomplished by adding a second group of eight quadrupoles to the 
scheme. These eight quads, at 13, L3,117, L17, K3, B3, K17, and B17, are 
excited with currents opposite to those in the first group at C3, F3, C17, 
F17, E3, H3, E17, and H17 respectively. Using the fact that the second 
group of quads are a normalized betatron phase advance of n away from 
the f i s t  group, the equations of section 3.1.2 with p = 17 show that the 
second group produces the same excitation coefficients as the first group. 
Thus the excitation coefficients produced by all 16 quads are 

where 

( ; ) = c ( $ ) M (  :), I4 

3 4  , .-.=-( 2 3 -& 3 ) .  c l = I + q =  1 ( ) 
12 d3 2 -4 3 

Using (44-45) in (49) we then have 

-dR 3R I , (50) 
-3R -&R -3 -& M = 2b -Rf2 -sZ 

/ \ &R -3R & - 3 )  
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f -3 & -3R &R 1 
-3 -&R -3R 

3 -J3 
M-' = 

3R f i  3 J  

The currents which produce the desired corrections are then 

4.2 Correction of resonances 3Qx = 26 and Qx + 2Qy = 26 

In Raka's scheme [5,6] for the correction of these resonances one first 
considers four correction sextupoles located in the C7, E7, C13, and E13 
straight sections. We shall take positions SI, s2, 53, s 4  to be the locations 
of the sextupoles in straight sections C7, E7, C13, and E13 respectively, 
with s1 = 0. Then using equations (34-36) and the superperiod symmetry 
we have 

Po1 = Px2 = Py3  = p y 4  = b,  p y l  = Py2 = Px3 = px4 = B ,  (53) 
and 

41 = $47)  = 4y(C7) = 0, 4 2  = 4@7) = qb,(E7), (54) 
43 = b(C13)  #y(C13), 44 = 4,(E13) = &(E13)- 

Now the normalized betatron phase advance between two points separated 
by two superperiods in the AGS is 7r/3, and the normalized phase advance 
between the number 7 and number 13 straight sections of a superperiod is 
4 M 7r/20. Thus we have 

41 = 0, 4 2  = ~ 1 3 ,  4 3  = 4, 4 4  = ~ / 3  t 4 (55) 

Using (53-55) and p = 26 in the equations of section 3.2 we find that the 
excitation coefficients produced by the four correctors are 
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where 

Cl = 1, C2 = -1/2, C3 = C O S W ,  C, = COS(W + 2 ~ / 3 ) ,  
SI = 0, S2 = a/2, S3 = s i n w ,  Sq = sin(w + 2n/3), 

and w = 264 M 2 6 ~ 1 2 0 .  

Now, to insure that the correction scheme does not introduce any 00 
harmonic components-which would alter the machine 
chromaticities-additional sextupoles at F7, H7, F13, and H13 are excited 
with currents opposite to those at C7, E7, C13, and E13 respectively. 
Since the additional sextupoles are three superperiods away from the first 
set of sextupoles, the normalized betatron phase advance between the two 
sets is ~ / 2 ,  and hence with p = 26 the equations of section 3.2 show that 
the additional set produces the same excitation coefficients as the first set. 
To insure that no odd harmonics in 0, and in particular no 90 or 170 
harmonics, are produced, a second group of eight sextupoles is added to 
the scheme. These eight sextupoles, at 17, K7, 113, K13, L7, B7, L13, and 
B13 are excited with the same currents as those at C7, E7, C13, E13, F7, 
H7, F13, and H13 respectively. Using the fact that the second group of 
sextupoles is a normalized betatron phase advance of T away from the first 
group, the equations of section 3.2 with p = 26 show that the second group 
produces the same excitation coefficients as the first group. Thus the 
excitation coefficients produced by all 16 sextupoles are four times those 
produced by the original set of four, and are therefore 

= 4c ($) M [ a )  , [E) I4 

(59) 
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where M is given by (57). The currents which produce the desired 
corrections are then 

where M-l is given by (58). 

4.3 Correction of resonances 3QY = 26 and 2Qo + Qy = 26 

These resonances are currently corrected with four air-core skew sextupoles 
located in straight sections E15, F15,15, and K5. However, during the 
1989 summer shutdown the skew sextupole in E15 will be removed and it 
.will no longer be possible to correct both resonances simultaneously. 
During the 1990 summer shutdown the remaining air-core skew sextupoles 
will be removed and four new iron-core units will be installed. A number 
of correction schemes using these new skew sextupoles have been 
considered, and based on constraints imposed by the straight section 
committee (Willem van Asselt) and the vacuum group (Kimo Welch) two 
sets of locations for the magnets axe currently recognized as possibilities. 
One set of locations would consist of straight sections 7 and 13 in one 
superperiod and the same straight sections two superperiods away. The 
other set would consist of straight sections 1 and 19 in one superperiod 
and the same straight sections two superperiods away. In each case the two 
pairs of straight sections are separated by two superperiods so that 
additional magnets may be added, (if necessary) as in the scheme 
discussed in the previous section, to insure that no harmful harmonic 
components are produced. 

Here we consider the more general case in which skew sextupoles are 
placed in straight sections i and j of superperiod M and in the same 
straight sections of superperiod N, where (i, j)  is any one of the pairs (19, 
l), (3, 17), (15, 5) ,  (7, 13), or (11, 9) ,  and M and N are n superperiods 
apart. (Note that the f is t  number of each pair corresponds to a vertical 
beta maximum and the second to a horizontal beta maximum). We shall 
take positions s1, s2, s3, and s4 to be the locations of the skew sextupoles 
in straight sections Mi, Ni, Mj, and Nj respectively, with s1 = 0. Then 
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using equations (34-36) and the superperiod symmetry we have 

Pel = P x 2  = P y 3  = P y 4  = b ,  P y l  = Pgz = P x 3  = P x 4  = B ,  (61 )  

and 
41 = $ , (Mi )  = &(Mi) = 0, 4 2  = 4 , ( N i )  = $y(Ni), 

4 3  = 4 d M d  = 4 y W ) ,  4 4  = 4 0 j )  = 4 y ( W  

(62 )  

Now the normalized betatron phase advance between two points separated 
by n superperiods in the AGS is n n / 6 ,  and the normalized phase advance 
between the i and j straight sections of a superperiod is 4 M ( j  - i )n /120 .  
Thus we have 

Using (61-63) and p = 26 in the equations of section 3.2 with 
interchanged we fhd that the excitation coefficients produced by the four 

and y 

correctors are [ cx ” )  = C ( e ) M (  CP :) 
sx I4 

where CY and SY are the cos and sin parts of K ~ ,  C X  and S X  are the cos 
and sin parts of tcyX/3, and 

(65) 
R3 J2 Si R3I2 S2 s3 

-R‘J2Ci -R1I2C2 -RC3 -RC4 
-R1I2S1 -R1J2S2 -RS3 -RS4 

M = b3J2 

and 

C1 = 1 ,  C2 = c o s ( n x / 3 ) ,  C3 = cos w ,  C4 = cos(w + n r / 3 ) ,  
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S1 = 0, S 2  = s i n ( n ~ / 3 ) ,  5’3 = s i n w ,  S4 = sin(w + nn/3), 

and w = 264 M 26( j  - i )n /120 .  The currents which produce the desired 
corrections are then 

where M-l is given by (66) .  

5 Application to the Booster 

The booster lattice [?I consists of six superperiods-labled A, B,  C, D, E, 
and F-each containing four FODO cells which are, to fist  order, 
identical. The positions of the horizontal beta maximums in each 
superperiod are sl, sa, 9 5 ,  s 7 ,  and those of the vertical beta maximums are 
SO, s 2 ,  s4, S 6 ,  98, with sj > si if j > i. We shall take SO in superperiod A to 
be the point of zero betatron phase. The normalized betatron phase 
advance (defined by equation 18) for each superperiod is n / 3 .  Assuming 
the four FODO cells in each superperiod are identical we have 

and 
Po0 = px2 = Px4 = Po6 = Po8 = a,  

By0 = py2 = Py4 = Py6 = Py8 = B ,  

P x 1 =  Po3 = Pz5 = Px~7 = A,  

Py1 = Py3 = Py5 = Py7 = b ,  

(69 )  

where q5zi and 4yi are the normalized betatron phase advances at the 
positions si, and Po; = Px(s;), PYi = p y ( s i ) .  To f i s t  order we also have 

a =  b ,  A =  B. ( 70) 

Although equations (68-70) are not exact-because the booster dipoles do 
not occupy the same positions in each FODO cell-they are good enough 
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for estimating the currents required for various correction schemes in the 
booster and therefore will be used in the following sections. 

The correction elements for the schemes discussed in the following sections 
are located at or near the positions si in each superperiod and are excited 
with currents Ij; where j = 1 ,  2,  3 ,  4, 5 ,  and 6 corresponds to superperiods 
A, B, C, D, E, and F respectively. Tepikian has shown [8, 91 that by 
choosing 

(71)  I.. - f.1, 
32 - 3 cy fj  COS^(^ - 1 ) ~ / 3 ] )  

one can correct the m Q ,  -t n Q y  = p resonances without introducing 
unwanted harmonics. 

5.1 Correction of resonances 2Q, = 9 and 2QY = 9 

Using equation (68) we find that for p = 9 the phase differences, p46 - p42 
and p45 - pq51 are odd multiples of n / 2  which, as we have shown in section 
3 ,  gives the most effective correction of the resonances. Thus, for the 
correction of the 2Q0 = 9 and 2Qy = 9 resonances we consider the four 
correction quadrupoles located in superperiod A at SI, s2, s5, and S 6 .  

Using (68-70) and p = 9 in the equations of section 3.1.2 we find that the 
excitation coefficients produced by the four correctors are 

where 

SZ S6 RS1 RS5 I -RC2 -RC6 -C1 -C5 
M a = b  (73)  

{ -RS2 -RSs  -5'1 -S5 ) 
Cj = cos (3a j /8 ) ,  Sj = s i n ( 3 n j / 8 ) ,  R = B/b, 

and 
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If we now excite the correctors at ss, 8 4 ,  s7, and 93 with currents Is = 12, 
I 4  = -16, 17 = 11, and 13 = -I,  we find that the excitation coefficients 
produced by these quadrupoles are 

where 

MU, COS(S/4) -sin(k/4) ’ = ( s in (~ /4 )  C~S(T/$) Mb = ( ’ ) 
0 ’  

The excitation coefficients produced by all eight quadrupoles in 
superperiod A are then 

(75) 

(76) 

Now, in the scheme proposed by S. Tepikian [8] for the correction of the 
2Qz = 9 and 2Qy = 9 resonances, the quadrupoles in the remaining 
superperiods are excited with currents given by (71).  This insures that no 
108, 58, 48, or 08 harmonic components are produced by the scheme. The 
excitation coefficients produced by the quadrupoles in superperiod j are 
then 

where 
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and MI is given by (78) and (73). Summing equation (79) over j we find 
that the excitation coefficients produced by the quadrupoles in all six 
superperiods are 

where, for p = 9, 
6 

M = C fjMj = 6M1. 
j=1 

The currents which produce the desired corrections are then 

5.2 Correction of resonances 3Qn = 14 and Qz + ZQ, = 14 

Using equation (68) we find that for p = 14 the phase differences, 
p48 - p42 and pq57 - p41 are odd multiples of n / 2  which, as we have shown 
in section 3.2, gives the most effective correction of the resonances. Thus 
for the correction of the 3Qz = 14 and Qz + 2Qy = 14 resonances we 
consider the four correction sextupoles located in superperiod A at 81,  8 2 ,  

87 ,  and $8 .  Using (68-70) and p = 14 in the equations of section 3.2 we 
find that the excitation coefficients produced by the four correctors are 

where 
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and 
R = B / b ,  Cj = cos(7nj/12), Sj = sin(7nj/12). 

If we now excite the correctors at 8 4 ,  $ 6 ,  33, and 9 5  with currents 1 4  = - 1 2 ,  
I6 = -Is, I3 = -Il, and Is = -I7 we find that the excitation coefficients 
produced by these sextupoles are 

where 

The excitation coefficients produced by all eight sextupoles in superperiod 

cj+ = C O S ( P ~ ~  + n/12), S: = sin(p4j + n/12), 

C3: = cos(pq5.j - n/12), S3: = sin(p4.j - n/12), 

(p4j = 14q5.j = 7nj/12). 

Now, in the scheme proposed by S. Tepikian [9] for the correction of the 
3QX = p and Qx f 2Qy = p resonances, the sextupoles in the remaining 
superperiods are excited with currents given by (71). For p = 14 this 
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insures that no 136, 90, 56, or 06 harmonics are produced. (The scheme 
does produce 106 and 48 harmonic components which are potentially 
harmful. However, for the tune spreads and operating point expected in 
the booster this should not be a problem). The excitation coefficients 
produced by the sextupoles in superperiod j are then 

where 

cosp ( j  - 1 ) ~ / 3  -sin& - l ) n / 3  
M j =  ( v j  0 vj o ) M i ,  q j =  ( sinp(j  - 1 ) ~ / 3  COSP(J’ - 1 ) ~ / 3  

and M1 is given by (88). Summing equation (89) over j we h d  that the 
excitation coefficients produced by the sextupoles in all six superperiods 
are 

where, for p = 14, 
6 

M = fjMj = 3M1. 
j=1 

The currents which produce the desired corrections are then 

5.3 Correction of resonances 3Q0 = 13 and Q0 + 2 9 ,  = 13 

For the correction of these resonances we again consider the four correction 
sextupoles located in superperiod A at SI, s2, s7, and 88.  Using (68-70) 
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and p = 13 in the equations of section 3.2 we find that the excitation 
coefficients produced by the four correctors are 

and 
R = B/b,  C j  = cos(13nj/24), Sj = sin(l’3nj/24). 

(Note that for p = 13 the phase differences, p$g - ~ $ 2  and ~ $ 7  - p&, are 
2n + 5n/4. The effectiveness of the correctors is proportional to the sin of 
this phase, as discussed in section 3.2). 

Now, as before, we excite the correctors at s 4 ,  S 6 ,  s3, and 3 5  with currents 
1 4  = - 1 2 ,  I6 = -Is, 13 = -I1, and Is = -17. The excitation coefficients 
produced by these sextupoles are 

where 

The excitation coefficients produced by all eight sextupoles in superperiod 
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where 

Mi = 2 b 3 / 2 ~ ~ ~ ( n / 2 4 )  

(97) 

I 

Now, as before, we excite the sextupoles in the remaining superperiods 
with currents given by (71). For p = 13 this insures that no 148, 108, 98, 
48, or 00 harmonics are produced. (The scheme does produce 58 harmonic 
components which are potentially harmful. However, for the tune spreads 
and operating point expected in the booster this should not be a problem). 
The excitation coefficients produced by the sextupoles in superperiod j are 
then 

where 

and MI is given by (97). Surnming equation (98) over j we find that the 
excitation coefficients produced by the sextupoles in all six superperiods 
are 

where, for p = 13, 
\ I7 

, (99) 
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The currents which produce the desired corrections are then 
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