

BNL-104518-2014-TECH

AGS/AD/Tech Note No. 85;BNL-104518-2014-IR

TESTS OF BRACKET AND COIL INSULATION - MAGNETS A-1, B-1, G-10, AND G-11 AFTER APRIL 1971 SHUTDOWN

E. J. Rutan

June 1971

Collider Accelerator Department

Brookhaven National Laboratory

U.S. Department of Energy

USDOE Office of Science (SC)

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.AT(30-1)-16 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Accelerator Department
BROOKHAVEN NATIONAL LABORATORY
Associated Universities, Inc.
Upton, New York

AGS DIVISION TECHNICAL NOTE

No. 85

E.J. Rutan

June 11, 1971

TESTS OF BRACKET AND COIL INSULATION - MAGNETS A-1, B-1, G-10, AND G-11 AFTER APRIL 1971 SHUTDOWN

(Continuation of Study Recommended AGS Tech Note No. 70, 1969)

During the routine inspection of the bracket insulation of magnet A-1, the micarta at the upstream bracket was found to be carbonized. This condition has occurred in the past. This type of failure of the micarta has resulted in charring of the magnet coil insulation and necessitated replacement of the magnet coil. Similar failures had been reported most recently in AGS Tech Note No. 70, and recommendations for replacement of the micarta with mica-Kapton had been made.

In November 1969, a trial installation of three mica sheets (NEMA grade 9) with two films of Kapton, (polyimide) between the mica sheets, was substituted for the micarta. These materials were selected because of high radiation resistance, good electrical insulation, and fire resistance. This assembly was installed on the end and front brackets of G-11 magnet. This magnet is in a high radiation area. The reading on June 3rd near this magnet was 3100 MR over a month after shutdown. The mica-Kapton sandwich under the upstream bracket was removed for inspection and test. After 1-1/2 years service, visual inspection showed no changes. Electrical tests showed it to be as good as new micarta. All tests are reported in the Appendix.

Coil 283 at A-1 had a charred area about 1 in. by 3-1/2 in. under the micarta at the upstream bracket. Tests were made on the coil insulation in place and on the micarta after removal. These are reported in the Appendix.

Compared with magnet B-1, the A-1 coils were very low in insulation resistance.

The results of the above inspections and tests were reviewed by Messrs. Czaja, Dryden, Gefers, Grisoli, Plotkin and Rutan, and the following recommendations are being put into effect:

- 1) The bracket insulation on magnets for possible high radiation areas shall be mica sheet Kapton film (a sandwich built up of three sheets of 35 mil NEMA No. 9 mica sheet with inorganic binder, with two films of Kapton--polyimide--between).
- 2) This insulation shall be installed at the upstream bracket and the first two brackets along the side of the magnet.
- 3) These sheets shall be cut larger than the present micarta so as to provide, if possible 3/4 in. additional creepage, on all sides, to the metal pad.
- 4) When making up the sandwich, the separate sheets shall be wiped clean and inspected for holes or foreign particles.
- 5) After the coils have been assembled on the magnet, surface and volume insulation resistance tests shall be measured following the procedure on Fig. 2 and Sheet No. 1 in the Appendix. The tests shall be made at locations 1A and B, 2, 5, 8A and B Fig. 1. This will serve as a bench mark for later after service tests.

APPENDIX

In this Appendix the test procedures for insulation resistance and results of recent tests are included.

The tests of surface and volume insulation resistance were adopted in 1965 (Figs. 1 and 2) as a convenient procedure to quickly determine the approximate condition of the magnet coil insulation on coils installed on magnets and in place in the ring. It is a rough test, but will usually indicate degraded insulation. These tests have the advantage that the electrodes are small and the megger is portable.

On Sheet No. 1 tests of two coils on magnet A-1 are compared with two coils on magnet B-1. The differences are very marked. Although at present we do not have a definite value for rejecting magnet coils in service, the fact that the surface of coil 283 was burned prompted the decision to remove and replace these coils.

Work will be done to determine if standards can be established so that the serviceability of the other coils can be decided.

On Sheet No. 2 the data of tests on micarta, unused, from service (G-10), burned A-1, and the mica-Kapton trial insulation, is reported. The exceptionally high insulation resistance tests of the mica after a year and a half in service in a high radiation area showed it equivalent to the unused micarta, and also the micarta from G-10 from a relative low radiation area. These results prompted the recommendations in the early part of this report.

Distr: Administration Group

Those mentioned in this report

ELEVATION AT A-A

ELEVATION AT B-B

MAGNET

STEEL

+TO GRD

INSULATION TEST - MAIN MAGNET COILS

LOCATION OF TEST ELECTRODES - O

WHEN COILS ARE NOTASSEMBLED ON MAGNET
LIST COIL NO., - POSITION, - SURFACE (TOP OR BOTTOM)

PROCEDURE - SURFACE INSULATION RESISTANCE

VOLUME INSULATION RESISTANCE TEST-MEGGER- 1000, 2500, 5000 VOLTS

MEGGER

	Λ	se.	~	1.		•			V	,
	MSULA	1710N X	PESIST.	ANCE-	MAGNET	COLLS-	MAGI	<u> 1575 4</u>	<u>-1 @B-/</u>	?
		j	- SUR		J. 1			O 134		
	BRA	CKET	, Vol	LIME I	PESIST	ANCE -		-13/4/1 SCUARD		e; .
18			1A					CG/L.	CONDUC	270
	<u>'C016</u>			Suns	ACE T	E5 1	VOLU	ME RE	S	
	CO12 1	Yo	TEST LOCATION (SEE FIG.)	1000 V		50000	10000		5000V	
	NO MICA		IA 2	1, 2	.4	.3	4.0	2.6	3.7	
	TOPOF	108	1 B 1 Y	60.	7.	3.3	2.0 9.0	2.1 % 7.0 ·	2,4 % Si 0 %	
		300 BOTTAM	1A 2	. 5	,3	, 2 %	2.0 3.0	1.7	2.5	
	Nove II	p v cop p	1 B 1 B	, 2 , 3 , 4	13.5	12 %	3.0	2.2	2,5	
	CO11 28.	3	e visib A ABOU	<u> </u>						7100
	1 EMD	d Mical Onned	A ADOV PTA ALS EEN IN A	S BURNI	ED (SE	E DATA	SHEET	<u> </u>	VA SURF	AC
	FOR CO	ompari		71 811 116	31 N 6 J 19 6 7 1	CONTRACTOR OF THE SECOND CONTRACTOR OF THE SEC	13 68 6 163 ************************************	<u> 13-1 1/07</u>	77 17 41	101
	B-1 Japa	578 F 70P	5 A 1 B	2000		45000	8000 10000	17000 20000	27000 3000	
			<i>I B</i>	10000	15000	27000	15000	20660	3000	
	13-1 10P0F	526. BOTTOM	1 A 2 1 B	8000 10000 1200	17000 25000 350	15000	8000	12000	7500	
	. B~/	COIL		1200 105 VE			9000	22000 10847/C		
			SUNFE	THE WE	nrueo	1886)			## F	
	RAD	PLATION	LEVE	6/3/				35 MR		
					R	3-1 MAG		20 MR		
COP	7	<u> </u>	1	<u></u>	l	L	<u> </u>	<u> </u>	<u> </u>	<u>i — — — </u>

			İ	<u>'NSULA</u>		1		
1MS0	VIATIO	ON MO	UNTED	ON GI	POUNDE	D DLAT	E COME	FRING
W	HOLE	AREA				uses and a second		
	***	//		guart	1	340 MEG	<u>ker</u>	
13/4°D			1 "	GUARD ATION,—				
	<u> </u>		<u> </u>	Allen =	MANASANISA 			
			<u> </u>	h t				
SPECII	HEM					E VOLU	ME RES	BISTAM
				2500 V		1000 Y	2500 X	SOOCH
			M	EGOHM	S	ME	<u>fohms</u>	
UNUSED	AA 10 A D							
	BOTHIC							
TERT	T CEN	rs n	60	63	70.000	6 0	69	30,000
ALONG.	EDGE		15000				13-13-1	9,999
SMORT-	ATCEM	FER 16"	60	50000		09	100 coat	25000
					V			
A-1 UPS	STREAM	BRACKET						
CON 283	-BURME	ID SIDE						
IN CONT	ACT WITH	T COIL	Al A A	1000	50 0 4	11100	1900	1900
Ci.	SNIER		400	400	3 80	1400	1200	1200
SURFAC.	IS IM PO	WTACT						
		P-CENTE		c 3	100.000	<i>6</i> 0	60	100 000
	r ,							
MEAR BO	IRMED C					CO	100 000	50,000
		al file	SPARKA	ve amb	SMORIN	GAT S	pes V	
MINIO	d FRAA	60.00				l I		
MICART. UPSTR	K-FROK	507						
AFA	EMTER	W ()	:60	69	100 000	60	©3	<i>©</i> 3
NEAR	EDEE		00	69	45000	60	69	100 000
3,7 3 2,10								-
800 4 00 4	4 =====================================							
MIGA-KI UPSTREA SINOE NEAR	APTON -	G-11				!		
UPSTREA	MAIN SE	AVICAT	7 60		100000	69	69	100000-1-
DINGE	1900 176 1500 10	7 GENIER	<u> </u>	60 60	100 0004 180 000†		(P)	<u>1000004</u> 1000004
1 200 6468	<u>6096</u>				POU POUT	- CrCv	(4.5 kg/	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
MICA-	WA PTON	- SUR.	FACE N	o NoTIC	EABLE	CHANG	E-	
	DARA	17-1011	AFA BAA	BEMEN	15000 5	9.18.1层 10	1891	
	1009 11 16	771011 1	75ADU	4K <i>& //// P. (1</i>)		WIVE ST	17//	
		As	2.4	MR				
		Pag - 1	20	0.70				
		8-1	20	MR				
		G10_	30	MR				
		7 1 . 4 4	8	14A D				
				CATER ACT	1	1	1	ı
		G-11	3/00					
		G-//	600					