THE BOOSTER-MODEL DATABASE: PHASE I

E. H. Auerbach

May 1990

Collider Accelerator Department
 Brookhaven National Laboratory

U.S. Department of Energy
 USDOE Office of Science (SC)

[^0]
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

THE "BOOSTER-MODEL" DATABASE,

PHASE I

BOOSTER TECHNICAL NOTE NO. 166

E. H. AUERBACH

MAY 24, 1990

ALTERNATING GRADIENT SYNCHROTRON DEPARTMENT BROOKHAVEN NATIONAL LABORATORY
 UPTON, NEW YORK 11973

I. Introduction.

Since early 1990, we have been experimenting with at database for modelling the booster; we have created a number of relations, entered data into them, and used these data in connection with some modelling programs (notably, in studies of the Linac-to-Booster Line). Thus we have obtained some experience in determining our database needs. We are now in a position to specify explicitly a Booster-Model-Database, which though only an early version, has a reasonable probability of being the permanent nucleus of any future expansion.

In specifying the relations (for a glossary of database terms used, see Appendix A) needed, we have tried to distinguish the various data groups used in describing objects in the machine according to whether a description is a model description or is essentially a physical one; if physical, one divides data among relations according as how general or specific these descriptive data are. The geographical layout of the machine and its ancillary lines forms a separate relation.

This viewpoint may not be the one chosen if one has a particular application (say control or graphics) in mind; however, we believe it lends itself best for describing data that feeds modelling and model-based programs.

An enumeration of the relations and the reasoning supporting the particular divison we have chosen is given in the following section (II.-A); the manner in which these relations are used is discussed in II.-B. Detailed specifications for the fields of these relations are given in Section III. A discussion of possible future expansions is the subject of Section IV. Appendices B, C and D list the objects in the Booster, the LTBand BTA-lines that define the contents of this database.
II. A. Relations in the "Booster_Model" Database.

The primary description of a ring (such as the Booster) or of a beam line is made by specifying the layout of the lattice: enumerating what lattice elements and instruments form the "machine" being defined. As a result, our first relations specify geography (i.e., contains data fields which either are purely geographical) or else (2) describe the elements in such general terms as to allow us to enter other relations where the descriptive data are stored.

These two aspects give us the relations:
(1) element_layouts
(2) machine_elements

Let us now consider a particular element, say a magnet (or an instrument). We can describe that element from various viewpoints. There are data applicable to it beacuse that data pertains to all elements of the same design-type; there are modeldata applicable because of the way a modeler (or the requirements of a modelling program) views that element; then there are data that apply to that particular instance of the design type. In terms of control (or variations in current in a magnet) some magnets are "tied together" and cannot be varied independently; this is specified by indicating which magnets are members of the same "string". Thus, for magnets, these several considerations give rise to the relations:
(3) magnet_properties
(4) magnet_prototypes
(5) magnet_models
(6) magnet_strings

Now, considering instruments, properties and prototypes are appropriate; but models are not necessary since what an instrument signifies in any modelling program is a location at which model data are to be computed or compared. We have found that the calibration data of the various instruments can not easily be forced into the same mold, so that it is simpler to have separate relations with different data fields for each specific instrument type rather than a single more general description like that for magnets of (3) and (4). Thus, for instruments we will have:
(7a) pues
(7b) strip_line_pms
(7c) harps
(7d) rad mons
plus others, Eo be added as needed.
Finally, the results of the model programs produce model descriptions of the machine (s) in terms of Twiss parameters, distorted orbits, etc. This give rise to:
(8) machine_model_parameters

In addition, we will define two relations containing general physical data not related to particular machine elements: these include basic physical constants, the values of which should be used consistently throughout the various calculations (for example, serious conflicts can occur if for the velocity of light one uses $3 \times 10^{\wedge} 8 \mathrm{~m} / \mathrm{sec}$ in one application and the more exact value -- $2 / 3 r d s$ of a part in a thousand less -- in another), and general machine parameters. The masses of heavy-ions, because of the structure of such a table, are placed in a separate relation. These define relations:
(9) physical_constants
(10) species masses

Detailed specifications are given in Section III.
II. B. Using the Relations of the "Booster_Model" Database.

Though in due course we will wish to do, we will not at the present time be doing direct, real-time, model-based control. Consequently time scales involved in obtaining data from the database are such that for a given modeling application, it is sufficient to create a file (which will be read by the modeling program) which contains an extract of the data in a given relation that the modeller wishes to use, extracted according to set conditions limiting the data either to those immediately needed or to a slightly larger superset. Similarly, on completion of a modelling calculation (or a series of such calculations) when one has finally decided on the results which are to be stored in the database, the resulting file(s) can then be converted into entries (or as modifications of entries) in the database. The use of such intermediate files also obviates problems arising from use of noncontemporaneous data: during a non-real-time modelling session, which can last several hours, some of the data in the database may properly change; by doing a conversion to files at the beginning of the session, rather than requesting data at the moment it is first needed in a calculation, one is then working with a consistent data set.
A. Luccio has developed programs to perform these functions: these are called "relation_import" and "relation export" and are described in a recent Tech. Note. [Booster Tech. Note No. 162]
III. Definitions of Relations in Database.

For each relation, we define its name followed by the definitions of the data-fields of the relation. At the end of each field definition is the format: integer, float, character (with number of characters); when there are a number of fields in sequence whose data are floating point numbers, the description: "float - all" follows the last one; the first field of each relation has a character format: "varying - 20 " for compatibility with database tools that already exist. For fields with the notation: (\#App.E), see Appendix E for a listing of possible entries.
(1) Relation "element_layouts"
machine_element_name standard name (in Reece convention) e.g., BLI.QH5, BMM.DHF8 -- See Appendices B, C, D for examples. [varying - 20]
machine
ring or line name
(\#App.E) e. g., LTB, BTA, BOOSTER [varying - 12]
s_coord longitudinal coordinate [in meters] of the center (along s) of the element as measured from the start of a line or a from a designated

$s=0$. for a ring [float]	
element_length	physical length in s-direction [in
	meters] (may be given as 0.)
	[float]
section	section name in machine (\#App.E)
	e. g., for BOOSTER: A1 to F8,
	for a line, distance in feet
	from start or section-number (if
	that line has numbered sections)
[the next six quantities give surveyed displacements from the design (nominal) location:]	
x offset	displacement in transverse x -direction [mm]
Y_offset	displacement in transverse y-direction [mm]
SOffset	displacement in longitudinal s-direction [mm]
pitch	rotation about x-axis [mrad]
yaw	rotation about y-axis [mrad]
roll	rotation about s-axis [mrad]
	[float - all]

(2) Relation "machine_elements"

machine_element_name	standard name (in Reece convention) e.g., BLI.QH5, BMM.DHF8 [varying - 20]
machine_element_type	for magnets, this describes the generic magnet-type, e.g., dipole, quad for instruments, the instrument-type e.g., strip_line_pm, pue (\#App.E) [varying - $\overline{2} 0$]
subsystem_name	$\begin{aligned} & \text { e.g. magnets, instruments, etc. } \\ & \text { [varying }-20] \\ & \text { (\#App.E) } \end{aligned}$
serial_no	serial number of the actual magnet, instrument, etc. currently placed as this machine_element_name [varying - 20]
control_device_name	control device to which this machine element_name is attached. A string of magnets powered together will have the same control_device_name (note: when several elements attached to the same control device, independent control may not be possible.) [varying - 20]
usable_flag	on/off signal -- off implies any one of hardware, calibration, mistrust by studies-people of reliablilty of this device $==>$ not useful for inclusion in correction algorithms (-- meaningful for correctors, instruments, etc. but useless for main magnets) [varying - 4]

(3) Relation "magnet_properties"
serial_no
prototype_name
data_source
magnetic_length
theta 1
theta-2
magnet_model_name
db 0
dbl)
db2
db3
db 4
db 5
)
serial number of an actual magnet E.g., BMD-037, BMQL-021 -the first part usually is the same as the prototype name (next entry) [varying - 20]
name of the design-type for this magnet (see next relation) [varying - 20]
$m=$ actually measured $g=$ generic (from averages of the same prototype, actually measured) $c=$ calculated for prototype [varying - 4]
magnetic length (actual) [in meters] entrance (upstream face) angle [in rad] exit (downstream face) angle [in rad] [float - all]
identification of magnet_model used
in modeling;
blank if unique [see relation (5)] [varying - 20]
) quadrupole
)relative field errors: sextupole
) octupole) decapole
dodecapole
[float - all]
(4) Relation "magnet prototypes"

prototype_name	magnets for lines follow the old AGS convention: e.g., 2D20, 4Q10; for the main ring, $B M D, B M S, B M Q, B M Q L$, [varying - 20]
magnet_class	BTQH, BTQV, BTQS, etc. are used. e.g., dipole, quad, sext, etc. [varying - 8] (\#App.E)
magnetic_length	magnetic length (design) [in meters]
physical-length	physical (overall) length [in meters]
core_length	```core (lamination) length [in meters] [float - all]```
apert_type	$\begin{gathered} \text { "ellp" or "rect" } \\ {[\text { varying - 4] }} \end{gathered}$
apert_x) half-width (rect) or
apert y) semi-axis (ellp) [in mm]
gap_height	[in mm]
pole_width	[in mm]
pole_tip radius	[in mm]
resistance	[in milli-ohms]
inductance	```[in milli-henries] [float - all]```
no_magnets	number of magnets of this prototype (including spares)

comments
[integer]
field for short description of prototype or its use
[text -- up to 60 characters]
(5) Relation "magnet_models"

magnet_model_name	if a given location has an independently controllable magnet, the "machine_element_name" appears here; otherwise, ${ }^{-}$a name unique to the model-class appears here and in relation (3) [varying - 20]
momentum	if the model for a given magnet is momentum independent, this is 0. or blank; otherwise the appropriate momentum [in $\mathrm{GeV} / \mathrm{c}$] is given [float]
K0	bend angle [in rad]
K1	quadrupole-strength [in $1 / \mathrm{m}$]
K2	sextupole-strength [in 1/m**2]
K3	octupole-strength [in $1 / \mathrm{m}^{\star *} 3$]
K4	decapole-strength [in $1 / \mathrm{m**} 4$]
K5	dodecapole-strength [in $1 / \mathrm{m}^{*} * 5$] [float - all]

(6) Relation "magnet_strings"

```
control_device_name
resistance
inductance
max_current
max_voltage
vac_chamber time constant
iron_time_constant
elec\overline{trical_time_constant}
no_magnets
B_I transfer func c
B_I_transfer_func_l (lin.) momentum dependence (if any)
    [float - all]
    (additional transfer function specifications,
        for example, as a function of B-dot, as required)
```

[The transfer functions can be described either by tables, by two
parameters (where eseentially linear) or by multiple parameters (where well described by a linear mid-region, with exponential tails). The precise description depends on results from the magnet measurement program. Note that where differences over a magnet-type are small, a single transfer function for the string is appropriate and the deviations can be either ignored or covered by dB0-dB5 of the relation "magnet properties".]
(7a,b,...) Relations for instruments --- in general, the relation name will be (or closely resemble) the name of the machine element_type (see Relation (2)) for that instrument: e.g., relation "harps"

```
serial_no serial number of actual instrument
                                    (E.g., BPUE-18)
                                    [varying - 20]
x0_elect offset of electrical center from x=0. [mm]
y0_elect offset of electrical center from y=0. [mm]
<c\overline{alibration constants> -- defined specfically for each}
                                    instrument type
                                    [float - all]
(as many as are necessary)
```

(8)

Relation "machine_model_parameters"

machine_element name	standard name (in Reece convention) e.g., BLI.QH5, BMM.DHF8 [varying - 20]
operating_regime	\{text or momentum value\} unique identifier supplied by modeler to distinguish different conditions giving rise to these calculated values [varying - 20]
s_coord_up	upstream s-coordinate [in meters] at which these parameters apply
s_coord_dn	downstream s-coordinate [in meters] at which these parameters apply (for "0-length devices this value will be 0 . and only one set of Twiss parameters are included). [note for magnets, these are a mag_length apart]
beta x_up	-_
beta_y_up)
alfa_x_up)
alfa_y_up) upstream Twiss parameters
eta_x_up	[betas, etas in meters;
eta_y_up	mus in rad/(2*pi)]
mu_x_up	$)$)
mu y_up)
x_c_up	\}
y_c_up	\} upstream distorted orbit values
xpr_c_up	\} [in mm and mrad]
ypr_c_up	\} [in mand

beta_x_dn)
beta-Y_dn)
alfa_x_dn)
alfa_y_dn) downstream Twiss parameters
eta_x_dn) [betas, etas in meters;
eta_y_dn) mus in rad/(2*pi)]
mu_x_dn)
mu_y_dn)
x_c_dn	\}
Y_c_dn	\} downstream distorted orbit values
xpr_c_dn	\} [in mm and mrad]
ypr_c_dn	\}
	[float - all]

(9) Relation "physical_constants"
symbol
constant
units
description
symbolic representation of physical constant E.g., "c", "m(p)" [varying - 20]
value of constant [float - double]
physical units in which value is expressed E.g., "m/sec", "GeV" [varying - 12]
short text
[text - 24]
(10) Relation "species_masses"
symbol

Z
A_min
A_max
mass_1
mass_2
mass_3
mass 4
mass ${ }^{-} 5$
mass_6
mass_7
mass_8
symbolic representation for element E.g., "He", "Au" [varying - 20 (only 2 used)]
atomic number of element
[integer]
minimum atomic mass in table [integer]
maximum atomic mass in table [integer]
)
) mass [in $\mathrm{GeV} / \mathrm{c}^{\wedge} 2$] of species
) for A_min, A_min +1 , ...,
) ($\overline{\mathrm{a}} \mathrm{t}$ most) $\mathrm{A} \min +7$
) (entries corresponding to
) unstable species should be missing or 0.)
[float - all]

Examples:
We show as an example, in Appendix F, the contents of the relation for "magnet_prototypes" [no. (4)] with only the major magnets for LTB, BOOSTER and BTA included,

Relation (3):
Additional quantities, based on the measurement program for Booster Main Magnets (Dipoles, Quads, Sextupoles) will be added on consultation with Ed. Bleser. Only summary quantities will be considered. It is not our intention to store complete magnet measurement data in the relation. [But, see Section IV, par. 3 , below.]

Relation (6):
B_I_tranfer_func multiplicity may have to be increased to account for different ramp-rates, etc.

Connections between the relations.
The key field in relation (1), "machine_element_name" is a geographical name and applies to the elemen \bar{t} at tha \bar{t} location in the machine configuration. The same name is used in relations (2) and (8) and refers to the same entity. In relations (2) and (7) additional information about that entity (not geographical in nature) are given. Relation (8) contains the results of calculations (under various conditions) for the layouts defined in relation (1).

The "serial_no" in relation (2) defines the specific physical device currently located as that machine element name; whether it is a magnet, an instrument or a member of some subsystem we may add later (such as vacuum) is defined in "subsystem_name" and its particular type (within that subsystem) is defined in "machine element_type". These form the keys for entry into relations ($\overline{3}$) through (7).

For magnets, "serial_no" leads us to relation (3) which gives data about that physical-device; "prototype name" leads us to relation (4) which gives data about the design-type of that "serial no" device while "magnet_model_name" leads to relation (5) for the model-type for that mägnet. - "control device name" from relation (2) provides the entry to relation ($\overline{6}$): "magnet-strings".

For instruments, "machine_element_type" from relation (2) defines which relation (7a, 7b, etc.) cōntains the data for that instrument while "serial_no" is the key for entering those relations; prototype information is not separated out since, in general, instruments have only one prototype per relation.

Relations (9) and (10) are general in nature and thus do not connect with the others.

Connection with Controls:
Relation (6) "magnet_strings" is the point of connection to the controls part of the Booster operation. Don Barton has suggested that a relation connecting the magnet_string names (rows) with the various control devices corresponding to those strings (columns) would describe a "controls-matrix" which connects this part of the Booster database with that for Booster controls.

This warrants further exploration in a separate study.

Views.
The database software allows for the creation of relationlike tables, called views, which join information from several relations subject to some specified condition(s). A useful set of views can be formed by joining relations (1) and (2), forming one such view for each "machine". If, further, these are printed out in ascending s_coord order, one has a "walking list" for each machine:

```
View: (a) machine_list_ltb
    (b) machine_list_booster
    (c) machine_list_bta
```

 machine_element_name \} in relations (1), (2)
 \(\begin{array}{ll}\text { s_coord } & > \\ \text { element_length } & > \\ & \end{array}\)
 section \(>\)
 subsystem_name ,
machine_element_type , from relation (2)
serial $\bar{n} 0$)
control_device_name)
subject to condition:
machine = (a) "ltb"
(b) "booster" in relation (1)
(c) "bta"

s_coord	$>$	
element_length	$>$	
from relation (1)		

Similarly, one can join relations (3)-(6), to obtain a comple "magnet-information" view which collects information about a specific magnet, its prototype, its modelling description, etc.

Additional views can be defined as needed; since a view is formed from existing data, no changes in the underlying data are required.
IV. Expansions and Additions.

Should storage of additional data appropriate to one of the defined relations become desirable, additional fields can be added as required.

The relation structure used here for magnets and instruments is easily expanded to include such other major systems as vacuum: first, one simply adds vacuum elements to relations (1) and (2), using as subsystem_name "vacuum" and as machine_element_type the kind of vacuum devíce described; then one adds $\bar{r} e l a t i o n s$ in the form of relations (7) for each kind of vacuum device (in parallel to what has been done for instruments).

Additional magnet data -- results of the measurement program not summarized by the B-to-I transfer function -- can be placed in a new relation (or separate relations for dipoles, quads, sextupoles) keyed by serial_no.

Other geographic data, such as survey results, can be placed in new relations which include both the monuments and the survey marks atop the main magnets.

Finally, we note that the structure established here can easily be expanded to include machines: "AGS", "HITL", "LEBT", etc. and to lines in the swicthyard and experimental areas, provided one has the resources to assemble and enter the data for these already existing parts of the AGS complex. The naming conventions will supply distinct machine_element_names and the separate "machines" in relation "element_layouts" $\bar{c} a n$ provide for separate views which produce separate "machine_lists" for each machine or line.

References

Programming Interface with the Booster Database, Examples. E.H. Auerbach and A. Luccio, Booster Tech. Note No. 162, 4/6/90.
Device Names for the AGS Facility. [updated, many times] K. Reece, unpublished. (Originaliy, AGS/AD Tech. Note No. 317 -- forthcoming reissue will use this number)

Acknowledgements

Discussions have been held at various times with the following people; their helpful comments, criticisms and suggestions are gratefully acknowledged.

General considerations: A. Luccio, K. Reece
Database matters: R. Katz, C. Griffiths
Additional discussions: D. Barton, E. Bleser, B. Culwick, R. Thomas

APPENDIX A.

relation	a relation is a basic storage unit in the database; it corresponds to a file consisting of a two-dimensional table with column headings; an entry (or record) in a relation corresponds to a row in the table.
(data-) field	a field corresponds to a column in the table (relation); the data entered in a given column may be restricted as to form, range, etc. when the relation and its fields are defined.
key	the value (data entry) of a field which is used to define uniquely a row (record) of the table (relation); the key field is usually the first data field in the relation.
view	a table consisting of data and fields selected from one or more relations, chosen according to some selection criteia. A view may look somewhat line a relation, but note this: (1) data may be retrieved from a view; (2) data may not be entered into a view since the actual data resides in the relations from which the view was defined.

```
    APPENDIX B.
    MACHINE ELEMENTS FOR BOOSTER
1. MAIN RING -- MAGNETS
\begin{tabular}{cc}
\begin{tabular}{c} 
Standard \\
Element \\
Name
\end{tabular} & \begin{tabular}{c} 
Prototype \\
Name \\
(Magnet)
\end{tabular} \\
BMM.SVA1 & BMS \\
BMM.QVA1 & BMQL \\
BMM.DHA1 & BMD \\
BMM.SHA2 & BMS \\
BMM.QHA2 & BMQ \\
BMM.DHA2 & BMD \\
BMM.SVA3 & BMS \\
BMM.QVA3 & BMQL \\
BMM.SHA4 & BMS \\
BMM.QHA4 & BMQ \\
BMM.DHA4 & BMD \\
BMM.SVA5 & BMS \\
BMM.QVA5 & BMQL \\
BMM.DHA5 & BMD \\
BMM.SHA6 & BMS \\
BMM.QHA6 & BMQ \\
BMM.SVA7 & BMS \\
BMM.QVA7 & BMQI \\
BMM.DHA7 & BMD \\
BMM.SHA8 & BMS \\
BMM.QHA8 & BMQ \\
BMM.DHA8 & BMD
\end{tabular}
BMM.SVB1 BMS
BMM.QVB1 BMQI
BMM.DHB1 BMD
BMM.SHB2 BMS
BMM.QHB2 BMQ
BMM.DHB2 BMD
BMM.SVB3 BMS
BMM.QVB3 BMQL
BMM.SHB4 BMS
BMM.QHB4 BMQ
BMM.DHB4 BMD
BMM.SVB5 BMS
BMM.QVB5 BMQL
BMM.DHB5 BMD
BMM.SHB6 BMS
BMM.QHB6 BMQ
BMM.SVB7 BMS
BMM.QVB7 BMQL
BMM.DHB7 BMD
BMM.SHB8 BMS
BMM.QHB8 BMQ
BMM.DHB8 BMD
```

BMM.SVC1	BMS
BMM. QVC1	BMQL
BMM. DHC1	BMD
BMM.SHC2	BMS
BMM. QHC 2	BMQ
BMM. DHC2	BMD
BMM. SVC3	BMS
BMM. QVC3	BMQL
BMM. SHC4	BMS
BMM. QHC4	BMQ
BMM. DHC 4	BMD
BMM.SVC5	BMS
BMM. QVC5	BMQL
BMM. DHC5	BMD
BMM. SHC 6	BMS
BMM. QHC 6	BMQ
BMM. SVC7	BMS
BMM. QVC7	BMQL
BMM. DHC7	BMD
BMM. SHC 8	BMS
BMM. QHC 8	BMQ
BMM. DHC8	BMD
BMM. SVD1	BMS
BMM. QVD1	BMQL
BMM. DHD 1	BMD
BMM. SHD 2	BMS
BMM. QHD 2	BMQ
BMM. DHD 2	BMD
BMM. SVD 3	BMS
BMM. QVD3	BMQL
BMM. SHD 4	BMS
BMM. QHD 4	BMQ
BMM. DHD 4	BMD
BMM. SVD 5	BMS
BMM. QVD 5	BMQL
BMM. DHD 5	BMD
BMM. SHD 6	BMS
BMM. QHD 6	BMQ
BMM. SVD7	BMS
BMM. QVD7	BMQL
BMM. DHD 7	BMD
BMM. SHD 8	BMS
BMM. QHD 8	BMQ
BMM . DHD 8	BMD
BMM.SVE1	BMS
BMM. QVE1	BMQL
BMM. DHE1	BMD
BMM. SHE2	BMS
BMM. QHE 2	BMQ
BMM. DHE 2	BMD
BMM. SVE 3	BMS
BMM. QVE3	BMQL
BMM. SHE 4	BMS
BMM. QHE 4	BMQ

BMM. DHE	BMD
BMM. SVE5	BMS
BMM. QVE5	BMQL
BMM.DHE5	BMD
BMM.SHE6	BMS
BMM. QHE6	BMQ
BMM.SVE7	BMS
BMM.QVE7	BMQL
BMM.DHE7	BMD
BMM.SHE8	BMS
BMM. QHE8	BMQ
BMM.DHE8	BMD

BMM. SVF1	BMS
BMM. QVFI	BMQL
BMM. DHF1	BMD
BMM. SHF2	BMS
BMM. QHF2	BMQ
BMM. DHF2	BMD
BMM.SVF3	BMS
BMM. QVF3	BMQI
BMM. SHF4	BMS
BMM. QHF 4	BMQ
BMM. DHF 4	BMD
BMM. SVF5	BMS
BMM. QVF5	BMQI
BMM. DHF5	BMD
BMM. SHF6	BMS
BMM. QHF6	BMQ
BMM. SVF 7	BMS
BMM. QVF7	BMQI
BMM. DHF7	BMD
BMM. SHF8	BMS
BMM. QHF8	BMQ
BMM. DHF8	BMD

2. MISCELLANEOUS KICKERS, SEPTA, Etc.

Standard
Element Name

BIJ.KRB8
BIJ.KRC3

BIJ.KRC6
BIJ. KRC8
BIJ.FOILC5
BIJ.SPTMC3

Injection Kicker (H.I.)
Injection Kicker ($P^{\prime} \mathrm{s}$ and H.I.)
Injection Kicker ($P^{\prime} s$ and H.I.)
Injection Kicker ($P^{\prime} s$)
Injection Foil
Electro-static Septum

BGN.KRE3	Damping Kicker
BGN.KRD3	Dump Kicker
BGN.KRE3	Tune Kicker
BXT.KRF3	Ejection Kicker
BXT.SPTMF6	Ejection Septum

3. TRIM MAGNETS AND OTHER CORRECTORS

Correction Dipoles
Trim Dipoles

Trim Quads
Trim Sextupoles
4. INSTRUMENTATION

```
BPM's:
```

 BMD.PUE_V.A1
 BMD.PUE H.A2
 BMD.PUE \({ }^{-} \mathrm{V}\).A3
 BMD.PUE H.A4
 BMD.PUE V.A5
 BMD. PUE \({ }^{-}\)H.A6
 BMD.PUE \({ }^{-}\)V.A7
 BMD.PUE_H.A8
 BMD.PUE V.BI
 BMD.PUE H.B2
 BMD.PUE V.B3
 BMD.PUE H.B4
 BMD.PUE V.B5
 BMD.PUE_H.B6
 BMD.PUE V.B7
 BMD.PUEH.B8
 BMD.PUE V.C1
 BMD.PUE H.C2
 BMD.PUE \(V\).C3
 BMD.PUE H.C4
 BMD.PUE V.C5
 BMD.PUE H.C6
 BMD.PUE-V.C7
 BMD.PUE_H.C8
 BMD.PUE V.DI
 BMD.PUE-H.D2
    ```
    BMD.PUE_V.D3
    BMD.PUE-H.D4
    BMD.PUE_V.D5
    BMD.PUE_V.D7
    BMD.PUE_H.D8
    BMD.PUE_V.EI
    BMD.PUE_H.E2
    BMD.PUE-V.E3
    BMD.PUE_V.E34 } note: additional PUE's
    BMD.PUEH.E34 } for damper control
    BMD.PUE H.E4
    BMD.PUE V.E5
    BMD.PUE_H.E6
    BMD.PUE_V.E7
    BMD.PUE-H.E8
    BMD.PUE_V.F1
    BMD.PUE-H.F2
    BMD.PUE-V.F3
    BMD.PUE_H.F4
    BMD.PUE_V.F5
    BMD.PUE V.F7
    BMD.PUE_H.F8
    note: F6 missing.
Current Transformer:
    BMD.CURR_TRANS.C6
Wall Monitors:
    BMD.WALL MON.D6
    BMD.WALL_MON.E3
(Ionization) Profile Monitors:
    BMD.IPM_H.D3
    BMD.IPM_V.D3
Radiation Monitors:
    BMD.RAD MON.XX
```

```
                    APPENDIX C.
                    MACHINE ELEMENTS FOR
                LTB-LINE
Standard
Element
Name
Prototype
Name
(Magnet)
Machine
Element Type
Major Magnets:
BLI.KR1 KRIL
BLI.QH1 4 Q10
BLI.QV2 4 Q10
BLI.QH3 4 Q10
BLI.QV4 4Q10
BLI.QH5 4Q10
BLI.DH1 2.5 D 45
BLI.DH2 2.5D45
BLI.QH6
4 Q10
BLI.DH3
2.5D45
BLI.QH7
4010
BLI.DH4
2.5D45
BLI.QH8
4Q10
BLI.QV9
4Q10
BLI.QH10
4 Q10
BLI.QV11
4Q10
BLI.QH12
4Q10
BLI.QV13
4 Q10
Steering magnets:
BLI.DH015 kicker
BLI.DV018
BLI.DV026
BLI.DH075
BLI.DV0 82
BLI.DH088
BLI.DV095
BLI.DV112
Instruments:
BLI.BPM019
BLI.BPM026
BLI.BPM066
BLI.BPM078
BLI.BPM090
BLI.BPM102
BLI.BPM109
BLI.MW0 35
BLI.MW107
kicker
kicker
kicker
kicker
kicker
kicker
kicker
fast kicker

strip_line_pm
strip_line_pm
strip_line_pm
strip_line_pm
strip_line_pm
strip_line_pm
strip_line_pm
harp
harp
[Note: The HTB-Line has not yet been specified; elements will have names of form:
BHI. xxxxx ]
```


APPENDIX D.
 MACHINE ELEMENTS FOR BTA-LINE

| Standard
 Element
 Name | Prototype
 Name
 (Magnet) |
| :---: | :--- |
| | |
| ABI.QV1 | $4 Q 20$ |
| ABI.DV1 | $2 D 20$ |
| ABI.QH2 | $4 Q 20$, |
| | $4 Q 20$, |
| ABI.QV3 | $4 Q 20$, |
| ABI.QH4 | $4 Q 20$ |
| ABI.DH2 | BMD |
| ABI.QV5 | $6.5 Q 20$ |
| ABI.DH3 | BMD |
| ABI.QH6 | $6.5 Q 20$ |
| ABI.QV7 | $6.5 Q 20$ |
| ABI.QH8 | $6.5 Q 20$ |
| ABI.DH4 | $2.5 D 6$ |
| ABI.QV9 | $6.5 Q 20$ |
| ABI.QH10 | $6.5 Q 20$ |
| ABI.QV11 | $6.5 Q 20$ |
| ABI.QH12 | $6.5 Q 20$ |
| ABI.QV13 | $6.5 Q 20$ |
| ABI.QH14 | $6.5 Q 20$ |
| ABI.DH5 | $2.5 D 48$ |
| ABI.QV15 | $4 Q 20$ |

APPENDIX E. DICTIONARY of ALLOWED NAMES for VARIOUS FIELDS

| Field Name | Allowed Values |
| :---: | :---: |
| control_device_name | <to be assigned in consultation with controls group> |
| machine | $\begin{aligned} & \text { BOOSTER } \\ & \text { BTA } \\ & \text { LTB } \\ & \text { [HTB] } \end{aligned}$ |
| machine_element_name | standard name (in Reece convention) [see lists in App. B-C-D for names] |
| machine_element_type | ```for magnets, etc.: magnet-type, e.g., dipole quad sext kicker foil septum``` |
| | ```for instruments: instrument-type, e.g., strip_line_pm pue curr_transf wall_mon harp ipm rad_mon``` |
| magnet_class | dipole quad sext |
| magnet_model_name | these are names conventionally used in modelprograms such as "MAD", "SYNCH", etc. and will be assigned by the modellers. |
| section | for BOOSTER:
 A1 to F8
 for a line: distance in feet from start of line, or a section-number (if that line has numbered sections) [usually a three character number with lead zeros] |
| ser_no | serial number of an actual magnet, instrument, etc., -- formed by joining a prototype name (possibly abbreviated) with a two or three digit number.
 E. G., BMQ-025 |
| subsystem_name | magnets
 instruments |

 \(\xrightarrow{\text { MAGNETS }}\)
 APPENDIX F .
$\underset{m}{n} \underset{\sim}{n} \underset{0}{n} \underset{\sim}{n}$
$\stackrel{\text { POLE }}{\text { WIDTH }}$ $\underset{\sim}{\sim}$ ※

蒐
 $\stackrel{\rightharpoonup}{0}$

[^0]: Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

