

BNL-105210-2014-TECH

Booster Technical Note No. 166;BNL-105210-2014-IR

THE BOOSTER-MODEL DATABASE: PHASE I

E. H. Auerbach

May 1990

Collider Accelerator Department Brookhaven National Laboratory

U.S. Department of Energy

USDOE Office of Science (SC)

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

THE "BOOSTER-MODEL" DATABASE,

PHASE I

BOOSTER TECHNICAL NOTE NO. 166

E. H. AUERBACH

MAY 24, 1990

ALTERNATING GRADIENT SYNCHROTRON DEPARTMENT BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK 11973

THE "BOOSTER_MODEL" DATABASE

(with SPECIFICATIONS)

E. H. Auerbach

I. Introduction.

Since early 1990, we have been experimenting with at database for modelling the booster; we have created a number of relations, entered data into them, and used these data in connection with some modelling programs (notably, in studies of the Linac-to-Booster Line). Thus we have obtained some experience in determining our database needs. We are now in a position to specify explicitly a Booster-Model-Database, which though only an early version, has a reasonable probability of being the permanent nucleus of any future expansion.

In specifying the relations (for a glossary of database terms used, see Appendix A) needed, we have tried to distinguish the various data groups used in describing objects in the machine according to whether a description is a model description or is essentially a physical one; if physical, one divides data among relations according as how general or specific these descriptive data are. The geographical layout of the machine and its ancillary lines forms a separate relation.

This viewpoint may not be the one chosen if one has a particular application (say control or graphics) in mind; however, we believe it lends itself best for describing data that feeds modelling and model-based programs.

An enumeration of the relations and the reasoning supporting the particular divison we have chosen is given in the following section (II.-A); the manner in which these relations are used is discussed in II.-B. Detailed specifications for the fields of these relations are given in Section III. A discussion of possible future expansions is the subject of Section IV. Appendices B, C and D list the objects in the Booster, the LTBand BTA-lines that define the contents of this database.

II. A. Relations in the "Booster Model" Database.

The primary description of a ring (such as the Booster) or of a beam line is made by specifying the layout of the lattice: enumerating what lattice elements and instruments form the "machine" being defined. As a result, our first relations specify geography (i.e., contains data fields which either are purely geographical) or else (2) describe the elements in such general terms as to allow us to enter other relations where the descriptive data are stored. These two aspects give us the relations:

- element layouts (1)
- (2) machine_elements

Let us now consider a particular element, say a magnet (or an instrument). We can describe that element from various viewpoints. There are data applicable to it beacuse that data pertains to all elements of the same design-type; there are modeldata applicable because of the way a modeler (or the requirements of a modelling program) views that element; then there are data that apply to that particular instance of the design type. In terms of control (or variations in current in a magnet) some magnets are "tied together" and cannot be varied independently; this is specified by indicating which magnets are members of the same "string". Thus, for magnets, these several considerations give rise to the relations:

- (3) magnet properties
- (4) magnet_prototypes
- (5) magnet models
- (6) magnet strings

Now, considering instruments, properties and prototypes are appropriate; but models are not necessary since what an instrument signifies in any modelling program is a location at which model data are to be computed or compared. We have found that the calibration data of the various instruments can not easily be forced into the same mold, so that it is simpler to have separate relations with different data fields for each specific instrument type rather than a single more general description like that for magnets of (3) and (4). Thus, for instruments we will have:

(7a) pues

- (7b) strip line pms
- (7c) harps
- (7d) rad mons

plus others, to be added as needed.

Finally, the results of the model programs produce model descriptions of the machine(s) in terms of Twiss parameters, distorted orbits, etc. This give rise to:

(8) machine model parameters

In addition, we will define two relations containing general physical data not related to particular machine elements: these include basic physical constants, the values of which should be used consistently throughout the various calculations (for example, serious conflicts can occur if for the velocity of light one uses 3x10^8 m/sec in one application and the more exact value -- 2/3rds of a part in a thousand less -- in another), and general machine parameters. The masses of heavy-ions, because of the structure of such a table, are placed in a separate relation. These define relations:

- (9) physical_constants
 (10) species_masses

Detailed specifications are given in Section III.

II. B. Using the Relations of the "Booster Model" Database.

Though in due course we will wish to do, we will not at the present time be doing direct, real-time, model-based control. Consequently time scales involved in obtaining data from the database are such that for a given modeling application, it is sufficient to create a file (which will be read by the modeling program) which contains an extract of the data in a given relation that the modeller wishes to use, extracted according to set conditions limiting the data either to those immediately needed or to a slightly larger superset. Similarly, on completion of a modelling calculation (or a series of such calculations) when one has finally decided on the results which are to be stored in the database, the resulting file(s) can then be converted into entries (or as modifications of entries) in the database. The use of such intermediate files also obviates problems arising from use of noncontemporaneous data: during a non-real-time modelling session, which can last several hours, some of the data in the database may properly change; by doing a conversion to files at the beginning of the session, rather than requesting data at the moment it is first needed in a calculation, one is then working with a consistent data set.

A. Luccio has developed programs to perform these functions: these are called "relation_import" and "relation_export" and are described in a recent Tech. Note. [Booster Tech. Note No. 162]

III. Definitions of Relations in Database.

For each relation, we define its name followed by the definitions of the data-fields of the relation. At the end of each field definition is the format: integer, float, character (with number of characters); when there are a number of fields in sequence whose data are floating point numbers, the description: "float - all" follows the last one; the first field of each relation has a character format: "varying - 20" for compatibility with database tools that already exist. For fields with the notation: (#App.E), see Appendix E for a listing of possible entries.

(1) Relation "element layouts"

machine element name	standard name (in Reece convention)
	o a BIT OUS DMM DUE9 Coo
	e.g., BLI.QRS, BEM.DHF8 See
	Appendices B, C, D for examples.
	[varying - 20]
machine	ring or line name (#App.E)
	e.g., LTB, BTA, BOOSTER
	[varying - 12]
s_coord	longitudinal coordinate [in meters]
	of the center (along s) of the
	element as measured from the start
	of a line or a from a designated

s=0. for a ring [float] element length physical length in s-direction [in meters] (may be given as 0.) [float] section section name in machine (#App.E) e. g., for BOOSTER: A1 to F8, for a line, distance in feet from start or section-number (if that line has numbered sections) [varying - 4] [the next six quantities give surveyed displacements from the design (nominal) location:] displacement in transverse x-direction [mm] x offset y offset displacement in transverse y-direction [mm] displacement in longitudinal s-direction [mm] s_offset pitch rotation about x-axis [mrad] rotation about y-axis [mrad] yaw roll rotation about s-axis [mrad] [float - all]

(2) Relation "machine_elements"

machine_element_name	standard name (in Reece convention) e.g., BLI.QH5, BMM.DHF8 [varying - 20]
machine_element_type	<pre>for magnets, this describes the gener- ic magnet-type, e.g., dipole, quad for instruments, the instrument-type e.g., strip_line_pm, pue (#App.E) [varving - 20]</pre>
subsystem_name	e.g., magnets, instruments, etc. [varying - 20] (#App.E)
serial_no	<pre>serial number of the actual magnet, instrument, etc. currently placed as this machine_element_name [varying - 20]</pre>
control_device_name	<pre>control device to which this machine_ element_name is attached. A string of magnets powered together will have the same control device_name (note: when several elements attach- ed to the same control device, inde- pendent control may not be possible.) [varying - 20]</pre>
usable_flag	<pre>on/off signal off implies any one of hardware, calibration, mistrust by studies-people of reliablilty of this device ==> not useful for inclusion in correction algorithms (meaningful for correctors, in- struments, etc. but useless for main magnets) [varying - 4]</pre>

(3) Relation "magnet_properties"

serial_no	<pre>serial number of an actual magnet E.g., BMD-037, BMQL-021 the first part usually is the same as the prototype_name (next entry) [varying - 20]</pre>					
prototype_name	<pre>name of the design-type for this magnet (see next relation) [varying - 20]</pre>					
data_source	<pre>m = actually measured g = generic (from averages of the same</pre>					
<pre>magnetic_length theta_1 theta_2</pre>	<pre>magnetic length (actual) [in meters] entrance (upstream face) angle [in rad] exit (downstream face) angle [in rad] [float - all]</pre>					
magnet_model_name	<pre>identification of magnet_model used in modeling; blank if unique [see relation (5)] [varying - 20]</pre>					
db0 db1 db2 db3 db4 db5) dipole quadrupole)relative field errors: sextupole) octupole) decapole) dodecapole					
	<u> </u>					

(4) Relation "magnet_prototypes"

prototype_name	<pre>magnets for lines follow the old AGS convention: e.g., 2D20, 4Q10; for the main ring, BMD, BMS, BMQ, BMQL, [varying - 20] BTOH, BTOV, BTOS, etc. are used.</pre>
<pre>magnet_class</pre>	e.g., dipole, quad, sext, etc. [varving - 8] (#App.E)
<pre>magnetic_length physical_length</pre>	magnetic length (design) [in meters] physical (overall) length [in meters]
core_length	core (lamination) length [in meters] [float - all]
apert_type	"ellp" or "rect" [varying - 4]
apert_x) half-width (rect) or
apert_y) semi-axis (ellp) [in mm]
gap_height	[in mm]
pole_width	[in mm]
pole_tip_radius	[1n mm]
resistance	[1n mllli-Onms]
inductance	[in milli-nenries] [float - all]
no_magnets	number of magnets of this prototype (including spares)

	[integer]
comments	field for short description of proto-
	type or its use
	[text up to 60 characters]

(5) Relation "magnet_models"

magnet_model_name	<pre>if a given location has an independ- ently controllable magnet, the "machine_element_name" appears here; otherwise, a name unique to the model-class appears here and in relation (3) [varying - 20]</pre>
momentum	<pre>if the model for a given magnet is momentum independent, this is 0. or blank; otherwise the appropriate momentum [in GeV/c] is given [float]</pre>
K0	bend angle [in rad]
K1	quadrupole-strength [in 1/m]
К2	sextupole-strength [in 1/m**2]
К3	octupole-strength [in 1/m**3]
К4	decapole-strength [in 1/m**4]
К5	<pre>dodecapole-strength [in 1/m**5] [float - all]</pre>

(6) Relation "magnet_strings"

control_device_name	name of string
	(unique to each magnet string)
	[varying - 20]
resistance	total resistance of string (magnets
	and cabling [in milli-ohms]
inductance	total inductance of string (magnets
	and cabling [in milli-henries]
max_current	maximum current permitted in powering
_	this string [in amps]
max_voltage	maximum voltage permitted in circuit
	for this string [in volts]
vac_chamber_time_consta:	nt)
iron_time_constant) [in msec]
electrical_time_constan	t)
	[float - all]
no_magnets	number of magnets in string
	[integer]
B_1_transfer_func_c	low momentum (constant part)
B_1_transfer_func_1	(lin.) momentum dependence (if any) [float - all]
(additional transfer	function specifications.
for example, as a :	function of B-dot, as required)

[The transfer functions can be described either by tables, by two

parameters (where essentially linear) or by multiple parameters (where well described by a linear mid-region, with exponential tails). The precise description depends on results from the magnet measurement program. Note that where differences over a magnet-type are small, a single transfer function for the string is appropriate and the deviations can be either ignored or covered by dBO-dB5 of the relation "magnet properties".]

<calibration constants> -- defined specfically for each instrument type [float - all] (as many as are necessary)

(8) Relation "machine model parameters"

machine_element_name	standard name (in Reece convention) e.g., BLI.QH5, BMM.DHF8 [varving - 20]
operating_regime	<pre>{text or momentum value} unique identi- fier supplied by modeler to dis- tinguish different conditions giv- ing rise to these calculated values [varying - 20]</pre>
s_coord_up	upstream s-coordinate [in meters] at which these parameters apply
s_coord_dn beta_x_up beta_y_up alfa_x_up	<pre>downstream s-coordinate [in meters] at which these parameters apply (for "0-length devices this value will be 0. and only one set of Twiss parameters are included). [note for magnets, these are a mag_length apart]))</pre>
alfa_y_up) upstream Twiss parameters
eta_x_up eta_y_up mu_x_up mu_y_up	<pre>) [Detas, etas in meters;) mus in rad/(2*pi)]))</pre>
x_c_up	}
y_c_up xpr_c_up ypr_c_up	<pre>} upstream distorted orbit values } [in mm and mrad] }</pre>

beta x dn)
beta y dn	
alfa_x_dn	
alfa_y_dn) downstream Twiss parameters
eta_x_dn) [betas, etas in meters;
eta_y_dn) mus in rad/(2*pi)]
mu_x_dn)
mu_y_dn)
x_c_dn	}
y_c_dn	<pre>} downstream distorted orbit values</pre>
xpr_c_dn	} [in mm and mrad]
ypr_c_dn	}
	[float - all]

(9) Relation "physical constants"

symbol	symbolic representation of physical
	constant E.g., "c", "m(p)"
	[varying - 20]
constant	value of constant
	[float - double]
units	physical units in which value is
	expressed E.q., "m/sec", "GeV"
	[varying - 12]
description	short text
-	[text - 24]

(10) Relation "species_ masses"

symbol	symbolic representation for element
	E.g., "He", "Au"
-	[varying - 20 (only 2 used)]
Z	atomic number of element
	[integer]
A_min	minimum atomic mass in table
—	[integer]
A max	maximum atomic mass in table
=	[integer]
mass 1)
mass ²) mass [in GeV/c^2] of species
mass_3) for A min A min + 1
mass 4) for $\underline{n}_{\underline{m}}$ (at most) $\underline{\lambda}$ min + 7
magg_1) $(at most) + 7$
mass_J) (entries corresponding to
mass_6) unstable species should be
mass_7) missing or 0.)
mass 8)
_	[float - all]

Examples:

We show as an example, in Appendix F, the contents of the relation for "magnet_prototypes" [no. (4)] with only the major magnets for LTB, BOOSTER and BTA included,

Additional Comments:

Relation (3):

Additional quantities, based on the measurement program for Booster Main Magnets (Dipoles, Quads, Sextupoles) will be added on consultation with Ed. Bleser. Only summary quantities will be considered. It is not our intention to store complete magnet measurement data in the relation. [But, see Section IV, par.3, below.]

Relation (6):

B_I_tranfer_func multiplicity may have to be increased to account for different ramp-rates, etc.

Connections between the relations.

The key field in relation (1), "machine_element_name" is a geographical name and applies to the element at that location in the machine configuration. The same name is used in relations (2) and (8) and refers to the same entity. In relations (2) and (7) additional information about that entity (not geographical in nature) are given. Relation (8) contains the results of calculations (under various conditions) for the layouts defined in relation (1).

The "serial_no" in relation (2) defines the specific physical device currently located as that machine_element_name; whether it is a magnet, an instrument or a member of some subsystem we may add later (such as vacuum) is defined in "subsystem_name" and its particular type (within that subsystem) is defined in "machine element_type". These form the keys for entry into relations (3) through (7).

For magnets, "serial_no" leads us to relation (3) which gives data about that physical device; "prototype_name" leads us to relation (4) which gives data about the design-type of that "serial _no" device while "magnet_model_name" leads to relation (5) for the model-type for that magnet. "control_device name" from relation (2) provides the entry to relation (6): "magnet-strings".

For instruments, "machine_element_type" from relation (2) defines which relation (7a, 7b, etc.) contains the data for that instrument while "serial_no" is the key for entering those relations; prototype information is not separated out since, in general, instruments have only one prototype per relation.

Relations (9) and (10) are general in nature and thus do not connect with the others.

Connection with Controls:

Relation (6) "magnet_strings" is the point of connection to the controls part of the Booster operation. Don Barton has suggested that a relation connecting the magnet_string names (rows) with the various control devices corresponding to those strings (columns) would describe a "controls-matrix" which connects this part of the Booster database with that for Booster controls.

This warrants further exploration in a separate study.

Views.

The database software allows for the creation of relationlike tables, called views, which join information from several relations subject to some specified condition(s). A useful set of views can be formed by joining relations (1) and (2), forming one such view for each "machine". If, further, these are printed out in ascending s_coord order, one has a "walking list" for each machine:

View: (a) (b) (c)	machine_list_ machine_list_ machine_list_	_ltb _boosi _bta	ter			
machine_el	.ement_name	}	in relat	tions	(1), (2)	
s_coord element_le section	ength	> > >	from re	lation	a (1)	
subsystem machine_el serial_no control_de	_name .ement_type evice_name)))	from re	lation	a (2)	
subje n	ect to conditi machine = (a) (b) (c)	ion: "ltb "boo "bta	" ster" "	in r	elation	(1)

Similarly, one can join relations (3)-(6), to obtain a comple "magnet-information" view which collects information about a specific magnet, its prototype, its modelling description, etc.

Additional views can be defined as needed; since a view is formed from existing data, no changes in the underlying data are required.

IV. Expansions and Additions.

Should storage of additional data appropriate to one of the defined relations become desirable, additional fields can be added as required.

The relation structure used here for magnets and instruments is easily expanded to include such other major systems as vacuum: first, one simply adds vacuum elements to relations (1) and (2), using as subsystem name "vacuum" and as machine element_type the kind of vacuum device described; then one adds relations in the form of relations (7) for each kind of vacuum device (in parallel to what has been done for instruments).

Additional magnet data -- results of the measurement program not summarized by the B-to-I transfer function -- can be placed in a new relation (or separate relations for dipoles, quads, sextupoles) keyed by serial no. Other geographic data, such as survey results, can be placed in new relations which include both the monuments and the survey marks atop the main magnets.

Finally, we note that the structure established here can easily be expanded to include machines: "AGS", "HITL", "LEBT", etc. and to lines in the switchyard and experimental areas, provided one has the resources to assemble and enter the data for these already existing parts of the AGS complex. The naming conventions will supply distinct machine_element_names and the separate "machines" in relation "element_layouts" can provide for separate views which produce separate "machine_lists" for each machine or line.

References

Programming Interface with the Booster Database, Examples. E.H. Auerbach and A. Luccio, Booster Tech. Note No. 162, 4/6/90. Device Names for the AGS Facility. [updated, many times] K. Reece, unpublished. (Originally, AGS/AD Tech. Note No. 317 -- forthcoming reissue will use this number)

Acknowledgements

Discussions have been held at various times with the following people; their helpful comments, criticisms and suggestions are gratefully acknowledged. General considerations: A. Luccio, K. Reece Database matters: R. Katz, C. Griffiths Additional discussions: D. Barton, E. Bleser, B. Culwick, R. Thomas

May 18, 1990

APPENDIX A.

DATABASE TERMS

relation	a relation is a basic storage unit in the database; it corresponds to a file con- sisting of a two-dimensional table with col- umn headings; an entry (or record) in a relation corresponds to a row in the table.
(data-) field	a field corresponds to a column in the table (relation); the data entered in a given column may be restricted as to form, range, etc. when the relation and its fields are defined.
key	the value (data entry) of a field which is used to define uniquely a row (record) of the table (relation); the key field is usually the first data field in the relation.
view	a table consisting of data and fields selec- ted from one or more relations, chosen ac- cording to some selection criteia. A view may look somewhat line a relation, but note this: (1) data may be retrieved from a view; (2) data may not be entered into a view since the actual data resides in the relations from which the view was defined.

APPENDIX B. MACHINE ELEMENTS FOR BOOSTER

1. MAIN RING -- MAGNETS

Standard Element Name	Prototype Name (Magnet)
BMM.SVA1 BMM.QVA1 BMM.DHA1 BMM.SHA2 BMM.QHA2 BMM.QHA2 BMM.QVA3 BMM.QVA3 BMM.QVA3 BMM.QVA3 BMM.QHA4 BMM.QHA4 BMM.QHA4 BMM.QVA5 BMM.QVA5 BMM.QVA5 BMM.QVA5 BMM.QVA5 BMM.QVA7 BMM.QVA7 BMM.QVA7 BMM.QHA8 BMM.QHA8 BMM.QHA8 BMM.QHA8	BMS BMQL BMD BMS BMQ BMD BMS BMQL BMS BMQL BMD BMS BMQL BMS BMQL BMS BMQL BMS BMQL BMS BMQL BMS BMQL BMD BMS BMQL BMD BMS BMQ BMS BMQ BMD
BMM.SVB1 BMM.QVB1 BMM.DHB1 BMM.QHB2 BMM.QHB2 BMM.DHB2 BMM.QVB3 BMM.QVB3 BMM.QVB3 BMM.QHB4 BMM.QHB4 BMM.DHB4 BMM.QHB4 BMM.QHB5 BMM.QHB5 BMM.QHB5 BMM.QHB5 BMM.QHB6 BMM.QHB6 BMM.QHB6 BMM.QHB7 BMM.QHB7 BMM.DHB7 BMM.DHB7 BMM.QHB8 BMM.QHB8 BMM.QHB8	BMS BMQL BMD BMS BMQ BMD BMS BMQL BMD BMS BMQL BMS BMQL BMS BMQL BMD BMS BMQL BMD BMS BMQL BMD BMS BMQ BMD

BMM.SVC1 BMM.QVC1 BMM.DHC1 BMM.DHC2 BMM.QHC2 BMM.DHC2 BMM.QVC3 BMM.QVC3 BMM.QVC3 BMM.QVC4 BMM.QHC4 BMM.DHC4 BMM.DHC4 BMM.QVC5 BMM.QVC5 BMM.QVC5 BMM.QVC5 BMM.QVC5 BMM.QVC5 BMM.QVC7 BMM.SHC6 BMM.SVC7 BMM.SHC6 BMM.QHC6 BMM.QHC7 BMM.DHC7 BMM.DHC7 BMM.DHC8	BMS BMQL BMD BMS BMQ BMD BMS BMQL BMD BMS BMQL BMS BMQL BMS BMQL BMS BMQL BMS BMQL BMS BMQL BMS BMQL BMS BMQL BMS
BMM.SVD1 BMM.QVD1 BMM.DHD1 BMM.DHD2 BMM.QHD2 BMM.DHD2 BMM.SVD3 BMM.QVD3 BMM.QVD3 BMM.QVD3 BMM.QVD3 BMM.QVD3 BMM.QHD4 BMM.QHD4 BMM.QVD5 BMM.QVD5 BMM.QVD5 BMM.QVD5 BMM.QVD5 BMM.QVD5 BMM.QHD6 BMM.SHD6 BMM.SVD7 BMM.QHD6 BMM.SVD7 BMM.QVD7 BMM.QVD7 BMM.QVD7 BMM.QHD8 BMM.QHD8 BMM.QHD8 BMM.QHD8	BMS BMQL BMD BMS BMQ BMS BMQL BMS BMQL BMS BMQL BMS BMQL BMS BMQL BMS BMQL BMS BMQL BMS BMQL BMS BMQL BMS
BMM.SVE1 BMM.QVE1 BMM.DHE1 BMM.SHE2 BMM.QHE2 BMM.DHE2 BMM.SVE3 BMM.SVE3 BMM.QVE3 BMM.SHE4 BMM.QHE4	BMS BMQL BMD BMS BMQ BMD BMS BMQL BMS BMQ

BMD BMS BMQ BMS BMQL BMD BMS BMQ BMD
BMS BMQL BMS BMQ BMD BMS BMQL BMS
BMQ BMD BMS BMQL BMD
BMS BMQ BMS BMQI. BMD BMS BMQ

2. MISCELLANEOUS KICKERS, SEPTA, Etc.

Standard Element Name

BIJ.KRB8	Injection Kicker (H.I.)
BIJ.KRC3	Injection Kicker
	(P's and H.I.)
BIJ.KRC6	Injection Kicker
	(P's and H.I.)
BIJ.KRC8	Injection Kicker (P's)
BIJ.FOILC5	Injection Foil
BIJ.SPTMC3	Electro-static Septum

BGN.KRE3	Damping Kicker
BGN.KRD3	Dump Kicker
BGN.KRE3	Tune Kicker

BXT.KRF3	Ejection	Kicker
BXT.SPTMF6	Ejection	Septum

3. TRIM MAGNETS AND OTHER CORRECTORS

Correction Dipoles

Trim Dipoles

Trim Quads

Trim Sextupoles

4. INSTRUMENTATION

BPM's: BMD.PUE_V.A1 BMD.PUE_H.A2 BMD.PUE_V.A3 BMD.PUE H.A4 BMD.PUE V.A5 BMD.PUE H.A6 BMD.PUE V.A7 BMD.PUE H.A8 BMD.PUE V.B1 BMD.PUE H.B2 BMD.PUE_V.B3 BMD.PUE_H.B4 BMD.PUE_V.B5 BMD.PUE_H.B6 DMD.PUE_H.B6 BMD.PUE_V.B7 BMD.PUE^TH.B8 BMD.PUE V.C1 BMD.PUE H.C2 BMD.PUE V.C3 BMD.PUE_H.C4 BMD.PUE V.C5 BMD.PUE H.C6 BMD.PUE V.C7 BMD.PUE H.C8 BMD.PUE V.D1 BMD.PUE_H.D2

BMD.PUE_V.D3 BMD.PUE_H.D4 BMD.PUE_V.D5	
BMD.PUE_V.D7 BMD.PUE_H.D8	note: D6 missing.
BMD.PUE_V.E1 BMD.PUE_H.E2 BMD.PUE_V.E3 BMD.PUE_V.E34 BMD.PUE_H.E34 BMD.PUE_H.E4 BMD.PUE_V.E5 BMD.PUE_H.E6 BMD.PUE_V.E7 BMD.PUE_H.E8	<pre>} note: additional PUE's } for damper control</pre>
BMD.PUE_V.F1 BMD.PUE_H.F2 BMD.PUE_V.F3 BMD.PUE_H.F4 BMD.PUE_V.F5 BMD.PUE_V.F7 BMD.PUE_H.F8	note: F6 missing.
Current Transfor BMD.CURR_TRANS	mer: .C6
Wall Monitors: BMD.WALL_MON.D BMD.WALL_MON.E	6 3
(Ionization) Pro BMD.IPM_H.D3 BMD.IPM_V.D3	file Monitors:
Radiation Monito BMD.RAD_MON.xx	rs:

APPENDIX C. MACHINE ELEMENTS FOR LTB-LINE

Standard Element Name	Prototype Name (Magnet)	Machine Element Type
Major Magnets: BLI.KR1 BLI.QH1 BLI.QV2 BLI.QH3 BLI.QV4 BLI.QH5 BLI.DH1 BLI.DH2 BLI.QH6 BLI.DH3 BLI.QH7 BLI.QH7 BLI.QH4 BLI.QH8 BLI.QV9 BLI.QV10 BLI.QV11 BLI.QV13	$\begin{array}{c} \text{KRIL} \\ 4\text{Q10} \\ 4\text{Q10} \\ 4\text{Q10} \\ 4\text{Q10} \\ 2.5\text{D45} \\ 2.5\text{D45} \\ 4\text{Q10} \\ 2.5\text{D45} \\ 4\text{Q10} \\ 2.5\text{D45} \\ 4\text{Q10} \\ 4$	
Steering magnet: BLI.DH015 BLI.DV018 BLI.DV026 BLI.DH075 BLI.DV082 BLI.DH088 BLI.DV095 BLI.DV112	s:	kicker kicker kicker kicker kicker kicker fast kicker
Instruments: BLI.BPM019 BLI.BPM026 BLI.BPM066 BLI.BPM078 BLI.BPM090 BLI.BPM102 BLI.BPM109 BLI.MW035 BLI.MW107		<pre>strip_line_pm strip_line_pm strip_line_pm strip_line_pm strip_line_pm strip_line_pm strip_line_pm harp harp</pre>

[Note: The HTB-Line has not yet been specified; elements will have names of form: BHI.xxxxx]

APPENDIX D. MACHINE ELEMENTS FOR BTA-LINE

Standard	Prototype	
Element	Name	
Name	(Magnet)	
ABI.QV1	4Q20	
ABI.DV1	2D20	
ABI.QH2	4Q20)	pair
	4Q20)	*
ABI.QV3	4Q20	
ABI.QH4	4Q20	
ABI.DH2	BMD	
ABI.QV5	6.5Q20	
ABI.DH3	BMD	
ABI.QH6	6.5Q20	
ABI.QV7	6.5Q20	
ABI.QH8	6.5Q20	
ABI.DH4	2.5D6	
ABI.QV9	6.5Q20	
ABI.QH10	6.5Q20	
ABI.QV11	6.5Q20	
ABI.QH12	6.5Q20	
ABI.QV13	6.5Q20	
ABI.QH14	6.5Q20	
ABI.DH5	2.5D48	
ABI.QV15	4020	

APPENDIX E. DICTIONARY of ALLOWED NAMES for VARIOUS FIELDS						
Field Name	Allowed Values					
control_device_name	<to assigned="" be="" consultation="" controls="" group="" in="" with=""></to>					
machine	BOOSTER BTA LTB [HTB]					
machine_element_name	standard name (in Reece convention) [see lists in App. B-C-D for names]					
machine_element_type	<pre>for magnets, etc.: magnet-type, e.g., dipole quad sext kicker </pre>					
	septum					
	<pre>for instruments: instrument-type, e.g., strip_line_pm pue curr_transf wall_mon harp ipm rad_mon</pre>					
magnet_class	dipole quad sext					
magnet_model_name	these are names conventionally used in model- programs such as "MAD", "SYNCH", etc. and will be assigned by the modellers.					
section	<pre>for BOOSTER: A1 to F8 for a line: distance in feet from start of line, or a section-number (if that line has number- ed sections) [usually a three character</pre>					
ser_no	<pre>serial number of an actual magnet,instrument, etc., formed by joining a prototype_name (possibly abbreviated) with a two or three digit number. E. g., BMQ-025</pre>					
subsystem_name	magnets instruments					

QLI> print MAGNET_PROTOTYPES

-

	COMMENTS	ooster Main Dipoles (36 + 1 spare)	additional used in "BTA" coster Main Quadrupoles (short version)	used for Horizfocussing quads coster Main Quadrupoles (longer version)	used for vertfocussing quads ooster Main Sextupoles	dnac-to-Booster Line Quads	inac-to-Booster Line Dipoles	TA Line Dinole	TA Line Dirdie	TA Line Dipole	TA Line Ouads	TA Line Quads	
NO	MAGNETS	37 1	25 1	25 1	48 1	131	4 1				9	10 1	
	INDUCTANCE	3.2	0.35	0.35	0.12								
	ESISTANCE	1.5	6.0	6.0	7.6								
POLE TIP	RADIUS R		82.55	82.55	82.55								
POLE	WIDTH	254	127	127									
GAP	HEIGHT	82.55											
APERT	Y	70	66	66		100	63	50	63	63	100	163	
APERT	×	152	66	66		100	63	50	63	63	100	163	
PHYSICAL APERT	LENGTH TYPE	2.37 rect	ellp	ellp		0.254 ellp	1.143 rect	ellp	ellp	rect	ellp	ellp	
CORE	LENGTH	2.31744			0.1								
MAGNETIC	LENGTH	2.4	0.47835	0.49105	0.1	0.3	1.2	0.5	0.1562	1.2345	0.5	0.5	
MAGNET	CLASS	dipole	guad	quad	sext	peng	dipole	dipole	dipole	dipole	quad	quad	
PROTOTYPE	NAME	BMD	DMQ	BMQL	BMS	4010	2.5D45	2D20	2.5D6	2.5D48	4020	6.5220	

APPENDIX F.