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H™ ion injection to a synchrotron enables one to circumvent the
restrictions imposed by the Louisville theorem and one can inject into the same
phase space occupied by circulating protons in the synchrotron. In other words,
if there are no other restrictions, one can inject arbitrarily long or many
linac pulses. This is particularly useful for the proposed "Accumulator-
Booster”l for the AGS since only multiple scattering and space charge would
eventually limit the length of the injection process. In conventional H™ ion
injection scheme, both incoming ions and circulating protoms go through the
stripping foil every time they come around to the injection point, and the
stripping foil is the major contributor to multiple scattering. The gas
scattering in the synchrotron can be controlled by means of a better vacuum but
the growth of the emittance eventually causes loss of the protons out of the
admittance of the machine. For polarized protons, the problem is even more
serious because the depolarizing resonance depends on the vertical emittance of
the circulating protons.

A new scheme to inject H- ions into a synchroton was exanined.? The
scheme attempts to minimize the vertical emittance growth and preserve the
protons inside the horizontal admittance of the machine. A Monte Carlo
simulation was made to compare the scheme with conventional injection. The
calculation indicates that up to twenty—five linac pulses can be injected
without excessive loss or vertical emittance blow-up.

3 used at the AGS and Fermilab

Conventional H™ ion injection schemes
utilizes the stripper foil arranged as shown in Figure la. The orientation of
both vertical and horizontal phase space is matched to minimize the dilution of

the phase space density. The foil covers one side of the phase space. 1In this
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arrangement more than half of the circulating beam goes through the foil every
time it comes around to the injection point.

An obvious improvement to this is shown in Figure 1b, where the stripper
is only wide enough to cover the incoming linac beam. The circulating beam has
less chance to hit the stripper and the growth of the emittance is reduced.

The scheme we are going to examine is a variation of the latter. One can
recognize the fact that there are two competing processes in the phase space
density dilution. One is from the multiple scattering and the other is caused
by the phase space orientation mismatch.

The injection point we examined has the following properties. In order to
minimize vertical emittance increase, we chose a location where the vertical B
function is as small as practical. In a regular synchrotron lattice, the verti-
cal condition imposed makes the horizontal B~function large. Since the emit-
tance of the linac is much smaller than the synchrotron admittance, one can
choose from a variety of phase space orientations. We choose one such that
vertical orientations of phase space match with circulating beams and form a
horizontal waist at the stripping foil (Figure 1).

Figure 2 shows the stacking inefficienty as a function of horizontal B
function of the linac and number of injected turns. Stacking inefficiency is
defined as the fraction of the particles lost during injection out of the
synchrotron admittance of:

Ay =120 7 x 107° meter-radian

40 ™ x 1076 ¢ "

AV

Injected linac emittance is assumed to be:

EH = EV = 5 7 x 10~° meter-radian
The Twiss parameters at the stripper foil are:
aH= - 2-14 av = 0.89
BH = 9.6 m BV =2.93 m
YH = 0.58 YV = 0.61

which are the actual parameters of the proposed A/B ring for the AGS.
As can be seen in Figure 2 there is a minimum at B linac of .8 meters
and a stacking efficienty of 997% even after 12,500 turns (25 linac pulses).

Below that point particles are lost because of the phase space dilution by
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mismatch and above the point beams are lost because of multiple scattering.
Several other lattices were also examined and an empirical relationship was
found. When the emittances and B-function of the linac have the relation:
€ £
acc
= 2

B, .
acc inj

inj

the best stacking efficiency was obtained. In other words, when angular spread

of the linac is ;é}-of the angular spread at x = o, the stacking efficiency is
2 .
highest.

We also examined the growth of both horizontal and vertical emittance as a
function of B inj. and number of turns injected. The results are shown in
Figures 3 and 4; again, the best compromise between both horizontal and verti-
cal emittance is found around B injection of 0.8, The emittances are cal-
culated for 97% of the surviving protons.

The case of B inj. = .8 m is compared with conventional methods used at
the AGS and Fermi labs. Also included in the comparison is the method which is
a simple improvement over conventional schemes. Figure 5 shows stacking inef-
ficiencies vs. number of stacking turns. Figures 6 and 7 show the growth of
horizontal and vertical emittances vs. number of turns. Apparent flattening of
the emittance growth is due to the particle loss out of the admittance of the
accumulator synchrotron. The error bars indicate systematic error mainly

caused by uncertainty of the foil thickness.
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Figure 3
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