The QTUNE Program--The AGS Extracted Beam Transport Program

J. Ryan

August 1982

Collider Accelerator Department
 Brookhaven National Laboratory

U.S. Department of Energy
 USDOE Office of Science (SC)

[^0]
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

The "QTUNE" Program--The AGS Extracted Beam Transport Program

J.F. Ryan

August 4, 1982

Introduction

The purpose of this Technical Note is to document the extracted beam transport program called "QTUNE". This program can be used to calculate beam sizes in the four SEB lines and the FEB line from the ring to the primary targets using the known power supply and magnet characteristics. Typical TTY and Versatec outputs for the "U" line and "C" line are shown in Figures 1 and 2. The program is run with the R-R QTUNE command when in the operations area.

Discussion

The primary purpose of this program is to calculate the horizontal and vertical beam sizes in the various beam lines using the present settings of the power supplies and the best known values of beam emittance. Beam splitting is not considered. All beam is assumed going down each line when calculating beam sizes. The magnetic data is calculated from the calculated magnet current using a 4th order power series. Power supply and magnet current limitations for the beam lines are included. Various groups of quadrupoles in the beam lines can be tuned to vary waist locations and sizes.

This program uses 5 by 5 matrices to include momentum dispersion effects. Because this program is similar to a first order "TRANSPORT" run, one output option will write on the "MATRIC-DAT" data file matrices and beam sizes in a similar format to "TRANSPORT". All other output data is written on the "QTUNEDAT" data file which should be printed after exiting from the program.

Program Options

The various program options are shown on the HELP file in Figure 3.
The "A" command will print on the "MATRIC-DAT" file the transport matrices and emittances using the beam line chosen with the constant BFILE and the power supply data chosen with constraints IAGSFG and IENUT. Figures $4 \mathrm{~A}-\mathrm{B}$ show a part of this file.

The "B command prints the calculated currents and fields in the magnets. The power supply values are chosen with the constants BFILE, IAGSFG and IENUT. Figures $5 A-B$ show this file for the " C " line.

The "H", "D", "E", "K" and "L" command descriptions are shown on Figure 3.
The "C" command is used to change one or more constants shown in Figure 6 using the NAMELIST feature. These constants only have numerical values. Those that effect the graphics output are XYRANG, ZRANGE, LFRAME, AND TEKVER. The input beam at H13 (FEB) or F13 (SEB) is described with PBEAM, ABEF13, ABEH13, DPP and H13MOM (FEB only). The beam line is chosen with BFILE, and IAGSFG selects if the power supply command or readback is used to calculate the magnet current. An off-line program, "ENUTQ", can be chosen to supply the power supply values and is selected using constant IENUT. This program, similar to "AGAST", rather than the TTY option, should be used for off-line communication since these values can be easily transferred to and from the on-line program "AGAST". The constant TEGFG is used to change to a different "ENUTQ" file.

The "G" command is used to plot beam sizes as on Figures 1, 2 or 7. An "E" will exit from this option. During FEB or SEB operation the constants are initialized so that a "G" command will plot the "U" line or "C" line beam sizes. The values of certain parameters are printed on the graph, "QTUNE-DAT", and sent to "AGAST" or "ENUTQ". These are shown in Figure 8 and defined in Figure 9.

The " P " and " M " commands will print on "QTUNE-DAT" the constants of the beam line and magnets as shown in Figures 10 and 11.

The "T" command, shown in Figure 12, is used to tune various groups of quads to meet desired values of waist parameters described in Figure 9. The beam sizes at the targets cannot be used to tune the quads before the targets, but can be varied by changing the waist locations and sizes. If tuning is mathematically successful and the program is on-line, the quad power supplies will be changed.

The "W" command calculates the values of the FEB or SEB parameters without plotting the graph.

Theory and Units

The beam is considered a collection of particles traveling down a beam line with the magnetic elements described with a matrix R_{i}.

Or
\rightarrow BEAM DIRECTION \rightarrow

The characteristics of the beam particles at the output can be determined from the following matrix equation:

$$
\begin{equation*}
\left[\mathrm{x}_{1}\right]=[\mathrm{R}] \times\left[\mathrm{X}_{\mathrm{o}}\right] \tag{2}
\end{equation*}
$$

"QTUNE" uses a 5×5 order matrix for the magnetic elements, [R]. Equation 2 can be expanded to:

$$
\left[\begin{array}{l}
\mathrm{x}_{1} \tag{3}\\
\theta_{1} \\
\mathrm{Y}_{1} \\
\phi_{1} \\
\delta_{1}
\end{array}\right]=\left[\begin{array}{lllll}
\mathrm{R}_{11} & \mathrm{R}_{12} & \mathrm{R}_{13} & \mathrm{R}_{14} & \mathrm{R}_{15} \\
\mathrm{R}_{21} & \mathrm{R}_{22} & \mathrm{R}_{23} & \mathrm{R}_{24} & \mathrm{R}_{25} \\
\mathrm{R}_{31} & \mathrm{R}_{32} & \mathrm{R}_{33} & \mathrm{R}_{34} & \mathrm{R}_{35} \\
\mathrm{R}_{41} & \mathrm{R}_{42} & \mathrm{R}_{43} & \mathrm{R}_{44} & \mathrm{R}_{45} \\
\mathrm{R}_{51} & \mathrm{R}_{52} & \mathrm{R}_{53} & \mathrm{R}_{54} & \mathrm{R}_{55}
\end{array}\right] \times\left[\begin{array}{l}
\mathrm{x}_{0} \\
\theta_{0} \\
\mathrm{x}_{0} \\
\phi_{0} \\
\delta_{0}
\end{array}\right]
$$

where standard TRANSPORT definitions apply to the particle characteristics:
$X_{o}--$ horizontal displacement of input ray, in inches, with respect to assumed central trajectory.
$\theta_{0}-\infty$ the angle (mr) that this input ray makes in horizontal plane with respect to central trajectory.
$Y_{0}--$ vertical displacement of input ray (inches) with respect to central trajectory.
$\phi_{0}--$ the angle (mr) that this input ray makes in vertical plane with respect to central trajectory.
$\delta_{0}--\Delta \mathrm{P} / \mathrm{P}=$ fractional momentum deviation (\%) of this input ray and the assumed central trajectory.

The units for the $[R]$ matrix are:

$$
\begin{aligned}
& R_{11}\left(\frac{\operatorname{In} X}{\operatorname{In} X}\right) \quad R_{12}\left(\frac{\operatorname{In} X}{\operatorname{mr} X}\right) \quad R_{13}\left(\frac{\operatorname{In} X}{\operatorname{In} Y}\right) \quad R_{14}\left(\frac{\operatorname{In} X}{\operatorname{mr} Y}\right) \quad R_{15}\left(\frac{\operatorname{In} X}{\%}\right) \\
& R_{21}\left(\frac{m r X}{\operatorname{In} X}\right) \quad R_{22}\left(\frac{m r X}{\operatorname{mr~X}}\right) \quad R_{23}\left(\frac{m r X}{\operatorname{In} Y}\right) \quad R_{24}\left(\frac{m r X}{m r X}\right) \quad R_{25}\left(\frac{m r X}{\%}\right) \\
& R_{31}\left(\frac{\operatorname{In} \mathrm{Y}}{\operatorname{In} \mathrm{X}}\right) \quad \mathrm{R}_{32}\left(\frac{\operatorname{In} \mathrm{Y}}{\operatorname{mr} \mathrm{X}}\right) \quad \mathrm{R}_{33}\left(\frac{\operatorname{In} \mathrm{Y}}{\operatorname{In} \mathrm{Y}}\right) \quad \mathrm{R}_{34}\left(\frac{\operatorname{In} \mathrm{Y}}{\operatorname{mr} \mathrm{Y}}\right) \quad \mathrm{R}_{35}\left(\frac{\operatorname{In} \mathrm{Y}}{\%}\right) \\
& R_{41}\left(\frac{\operatorname{mr} Y}{\operatorname{In} X}\right) \quad R_{42}\left(\frac{\operatorname{mr} Y}{m r X}\right) \quad R_{43}\left(\frac{m r Y}{\operatorname{In} Y}\right) \quad R_{44}\left(\frac{m r Y}{m r Y}\right) \quad R_{45}\left(\frac{\mathrm{mr} Y}{\%}\right) \\
& \mathrm{R}_{51}\left(\frac{\%}{\operatorname{In} \mathrm{X}}\right) \quad \mathrm{R}_{52}\left(\frac{\%}{\operatorname{mr} X}\right) \quad \mathrm{R}_{53}\left(\frac{\%}{\operatorname{In} \mathrm{Y}}\right) \quad \mathrm{R}_{54}\left(\frac{\%}{\operatorname{mr} Y}\right) \quad \mathrm{R}_{55}\left(\frac{\%}{\%}\right)
\end{aligned}
$$

Figures 4A-B show the individual element matrix and total [R] matrix at different points in the "C" line. "QTUNE" calculates matrices for drift spaces, horizontal and vertical focussing quadrupoles, wedge dipole and pitching magnets without edge focusing, and rectangular dipole and pitching magnets with edge focussing.

The beam is considered an array of particles that is described with a fth order symmetrical sigma ellipsoid. For historical reasons the program uses a rms beam and then converts this to a 99% beam. The symmetric SIGMA matrix at at the beam line input is:
$\left[\begin{array}{lllll}\left.\sigma_{0}\right] \\ \sigma_{11} & \sigma_{21} & \sigma_{31} & \sigma_{41} & \sigma_{51} \\ \sigma_{21} & \sigma_{22} & \sigma_{32} & \sigma_{42} & \sigma_{52} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} & \sigma_{43} & \sigma_{53} \\ \sigma_{41} & \sigma_{42} & \sigma_{43} & \sigma_{44} & \sigma_{54} \\ \sigma_{51} & \sigma_{52} & \sigma_{53} & \sigma_{54} & \sigma_{55}\end{array}\right]$

$$
\begin{aligned}
& \sqrt{\sigma_{11}}=X_{\max }=\text { maximum (half) width of the beam envelop in the } X \\
& \text { (bend) plane at the given point (inches). } \\
& \sqrt{\sigma_{22}}=\theta_{\max }=\text { maximum (half) angular divergence of the beam } \\
& \text { envelope in the } \mathrm{X} \text {-bend plane. } \\
& \sqrt{\sigma_{33}}=Y_{\text {max }}=\operatorname{maximum} \text { (half) height of the beam envelope. } \\
& \sqrt{\sigma_{44}}=\phi_{\max }=\text { maximum (half) angular divergence of the beam } \\
& \text { envelope in the } Y \text { (non-bend) plane. } \\
& \sqrt{\sigma_{55}}=\delta_{\text {max }}=\text { half-width }(1 / 2 \Delta \mathrm{P} / \mathrm{P}) \text { of the momentum interval } \\
& \text { being transmitted by the system. }
\end{aligned}
$$

The coupling elements are the $\sigma_{i j}$ elements for i not equal to j. "QTUNE" assumes that the input beam for the SEB or FEB lines have no input $X-Y$ coupling or:
\(\left[\begin{array}{lllll}\sigma_{0}

0\end{array}\right]\)| σ_{11} | σ_{21} | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| σ_{21} | σ_{22} | 0 | 0 | 0 |
| 0 | 0 | σ_{33} | σ_{43} | 0 |
| 0 | 0 | σ_{43} | σ_{44} | 0 |
| 0 | 0 | 0 | 0 | σ_{55} |

The input FEB beam is also assumed to have input momentum dispersion or the R_{15} and R_{25} elements are non-zero at H13.

At any point in the beam line, the SIGMA matrix $\left[\sigma_{1}\right]$ can be found from the input matrix $\left[\sigma_{0}\right]$ and the total $[R]$ matrix to this point:

$$
\begin{equation*}
\left[\sigma_{1}\right]=[R] \times\left[\sigma_{0}\right] \times\left[R^{\mathrm{T}}\right] \tag{6}
\end{equation*}
$$

where $\left[R^{T}\right]$ is the transpose of $[R]$.
The graphs of Figures 1 and 2 are obtained by plotting $\sqrt{\sigma_{11}}$ and $\sqrt{\sigma_{33}}$ along the beam line for a 99% beam. The program also plots the horizontal momentum dispersion parameters, R_{15} and R_{25}, along the beam line.

The input SIGMA matrix, $\left[\sigma_{0}\right]$ is obtained from the constants ABEF13 or ABEHI3 and DPP. For no $X-Y$ coupling, the horizontal part of $\left[\sigma_{0}\right]$ is:

$$
\begin{array}{ll}
{\left[\begin{array}{ll}
\sigma_{11} & \sigma_{21} \\
\sigma_{21} & \sigma_{22}
\end{array}\right]=\varepsilon_{H}\left[\begin{array}{cc}
\beta_{H} & -\alpha_{H} \\
-\alpha_{H} & \partial_{H}
\end{array}\right]} \\
\sigma_{11} & =\varepsilon_{H} \beta_{H} \\
\sigma_{21} & =-\varepsilon_{H} \alpha_{H} \\
\sigma_{22} & =\varepsilon_{H} \gamma_{H}=\varepsilon_{H}\left(\frac{1+\alpha_{H}^{2}}{\beta_{H}}\right)
\end{array}
$$

where α, β, and ε are the rms beam Twiss parameters as specified in ABEF13 or ABEH13. These are initialized to the best know values of the emittance at F13 (from H. Weisberg) or H13 (W. Weng).
α - dimensionless
B - kiloinch
$\varepsilon-$ epislon $=$ rms emittance (inch-mrad)
The 99% beam emittance $=9.2103 \varepsilon_{\text {rms }}$
The 99% beam width plotted $=3.0348$ (beam width for rms beam)
The vertical $\left[\sigma_{0}\right]$ elements, σ_{33}, σ_{43}, and σ_{44} are obtained in a similar way.

If $X-Y$ coupling occurs downstream, the beam ellipsoid is assumed to have the same 5th order volume or no losses are assumed. THe horizontal and vertical emittances may change. To determine the location of a waist, the emittance in that plane is needed at the entrance to the drift space. The emittance is the projection of the ellipsoid on that plane or

$$
\varepsilon_{H}=\operatorname{DET}\left(\begin{array}{ll}
\sigma_{11} & \sigma_{21} \tag{8}\\
\sigma_{21} & \sigma_{22}
\end{array}\right) \text { or } \varepsilon_{V}=\operatorname{DET}\left(\begin{array}{ll}
\sigma_{33} & \sigma_{43} \\
\sigma_{43} & \sigma_{44}
\end{array}\right)
$$

where DET is the determinant.

Equation (6) can be expanded and simplified for an input beam with no $X-Y$ coupling (Equation (5)).

$$
\begin{equation*}
[\sigma]_{1}=[\mathrm{R}] \times[\sigma]_{0} \times\left[R^{T}\right] \tag{6}
\end{equation*}
$$

At Point 1

$$
\begin{align*}
\left(\sigma_{11}\right)_{1}=\left(X_{\text {max }}\right)^{2} & =\left(\sigma_{11}\right)_{\circ} R_{11}^{2}+2\left(\sigma_{21}\right) R_{11} R_{12}+\left(\sigma_{22}\right)_{\circ} R_{12}^{2} \tag{7}\\
& +\left(\sigma_{33}\right)_{\circ} R_{13}^{2}+2\left(\sigma_{43}\right)_{\circ} R_{13} R_{14}+\left(\sigma_{44}\right)_{\circ} R_{14}^{2} \\
& +\left(\sigma_{66}\right)_{\circ} R_{16}^{2} \\
\left(\sigma_{33}\right)_{1}=\left(Y_{\text {max }}\right)^{2} & =\left(\sigma_{11}\right)_{\circ} R_{31}^{2}+2\left(\sigma_{21}\right)_{\circ} R_{32} R_{31}+\left(\sigma_{22}\right)_{\circ} R_{32}^{2} \tag{8}\\
& +\left(\sigma_{33}\right)_{\circ} R_{33}^{2}+2\left(\sigma_{43}\right)_{\circ} R_{34} R_{33}+\left(\sigma_{44}\right)_{\circ} R_{34}^{2} \\
& +\left(\sigma_{66}\right)_{\circ} R_{36}^{2}
\end{align*}
$$

$$
+\left(\sigma_{22}\right)_{o} R_{12} R_{32}+\left(\sigma_{33}\right)_{o} R_{13} R_{33}+\left(\sigma_{43}\right)_{o} \cdot x
$$

$$
\left(\mathrm{R}_{14} \mathrm{R}_{33}+\mathrm{R}_{13} \mathrm{R}_{34}\right)
$$

$$
+\left(\sigma_{44}\right)_{\circ} R_{14} R_{34}+\left(\sigma_{66}\right)_{o} R_{16} R_{36}
$$

Where the $\left(\sigma_{i j}\right)_{o}$ are the input beam components and the $R_{i j}$ are the total matrix elements from the input to the Point 1 in the beam line. The input beam Twiss parameters ($\alpha, \beta, \varepsilon$) can be found experimentally by fitting several beam width measurements to Equation (6) or (7) knowing the elements of the [R] matrix at the measurement point.
mn.
Distribution: Dept. Admin.
A.D. Physicists

AGS Div. Engineers

AGS Div. Tech. Note No. 181
Figure 1


```
& <CR - - PRIMT ON "DTUNE.DAT" BEAN LINE DATA UTHH FIELOS & CURRENTSIN
    MATFETS
& <BN- - HADNE THE OONGTANTS
O<R - DELETE STHRT DUER\ ON THE "QTUNE.DAT" FLLE.
E<CR> - EXIT
G <RE - FLOT GEQ PROFILES & GET WALST PARAMETERS FROM PRESENT
MAGNET SETTIMGS
K GCQ>-- TYPE DUT COHSIATS AND THEIF DEFINLTIOHS
L<C* -- LIST &PRIHT) DN "GTMNE DAT" COHQTANTG & DEFINITIONG
M<CR` - PRIHT OH "QTUME DRT MGGNET LENGTHG & FIELO US CURRENT POLER
    SERIES COEFF. FON BEAT LIHE NHGHETS
P<CRY - PRIHT ON "QTHUE DAT" PONER SUPPLY P&RGMETERS FOR BEGMLLINE
    HmGNETS
T<CR> - TUNE THE DUADS SY UMRYMG THE DUADS OR WALST PARADETERS ON
AGAST AHO PLOT SEAM PROTILES.
N SCP - - CALCULATES HATST PHRMDETERG FROM AGAST COMNANDS % SEND WAIST
IHFORMATION'TO AGHST FOR MORHING REPORT; HO PLOTS MADE.
```


GRHS PARTUETERS:

ALPHA, BETA, EPSTLNT (H,V) AT F13: -6.33881 .9952 .01014040 .8708 .90 .127990 .60150

ELEMEMT

Z (ITCHES)

START $===$	1.00000
	0.00000
	0.00000:1
	0.00000 .1
	0.00000
	O. 0001 CNCHES

TOTAL MATRIK'ニ==
0. 0800 INCMES
1.00000
0.00000
0.03000
0.00000
0.00000
1.43 .025 IMCHPS

TOTAL. MATRIX $===$

TOTAL MATRTK $===$
188.1\%5. IMCHES

$=$ =	1.00000
	0.00009
	0.00008
	0.00000
	0.00000
	186.250 IMCMES

TOTAL MATRIX $===$

ELEMENT OR TOTAL MATRTX TROM: START
0.00003
1.00009
.00300
0.00303
0.00000
0.00000
0.00030
1.03000
0.03030
0.00003

0.00000	0.00000
0.00090	0.00000
0.00000	0.00000
1.00000	0.00000

1.00030.i		0:00003	0.00000

6. $00300{ }^{1}$	1.00000	0 - 00000	
9.00000m	0.00030	: 1.0000	0.00000
0.00000.	0.00000	10.00000	1.00000
0.00000	0.00003	0.00000	0.00000

0.00090	0.00000
0.00000	0.00000
0.12393	0.00000
1.00000	0.00000
0.00003	$: 1.00000$

0.00000
0.00000
0.00000
$1: 000000$

TRANSPORT BLEAM MATRIX

$1.00000: 1$	0.14383	- 10.100000	0.00000
0.000004	1.00000	0: 01300	0.03030
- 00000	0.00000	1.00009	0.14883
0.0000	0.00000	19:00030	1:00000
0.00030	0.00000	2:00000	0.00000

$-0.02801:$
-7.11699
$0.00090:$
0.02000
1.02030

185.8 EO . I ROHES

"C" LINE HAGNETS FROM F13 TO C CTARGET

--mLIEHENT--MAGNET				--POWER SUPPLY DATA---			- MAGNET DATA FOR 296000 GEVZC--		
\#	Varie.	LABEL:	EITD	DDF 1	CHD/RDBE: DDF2E	CED/RDEK			
1			DRITT						0.0
2	CDI	CD1	RDPOL	CD1	-2243	0	1.40188.5:	-445: 524.	-0.67027
3			DRIPT					-6.5502	-6.55019
4	Col	CQ1	QUAIP	CQ1	-1898	\%	1.42650.	-6.5502	-0.0.
5	C02	C02	DRIET	C02	1073	0	1.07800m:	4.9843	4.98428
7			DRITT						-1.39052
8	cos	C03	gUad	Ca3 ${ }^{\text {c }}$	-303	0	0.30300%	-1.3905	-1.39052
9			DRIPT	CQ4	68%	0	$0.51525]$	12.3747	2.37467
11	C84	Cat	DRIFT	Ged					0.0
12		AB1	DRIFT				.		0.0
13			DRIFT				:		0.0
14		BT3	DRIMT						-
15			DRITT						0.0
16		AP1	DRIFT						0.0
17			DRITT						9.0
18		CP1	DRIFT						0.0
19			PRIFT				:		0.0
20		AD2	DRIFT						0.0
21			DRIFT						0.0
22		AD3	DRIFT				:		0.0
23	CD2 ${ }^{\prime}$	CD2	RDPOL	CD283	3269 :	0	1.225883.	510.4198	10.76775
25			DRIET					510.3109	- 0.0675
26	CD3	CD3	RDPOL	CD288	3269 " ${ }^{\text {CDST }}$	0	1.22588:		(3.)
27	C05	C35 :	DRIFT	C0588	-1105 ..	0	0.27625	-4.0898:	-4.038979
29			DRIFT						9.0.77303
30	cos	cab	CUAD	C@687	10000	0	0.25000 a	3.7638	3.77383
31			DRIET		$1000:$	0	$0.250001:$	3.7733:	3.77383
32 33	$\mathrm{CO} /$	CQ\%	RUAD	as6eri	1000:				0.0
33	C03	Ces	drilit	C@588	-1105	(1)	0.27625:.	. -4.0893	-4.08979
35			DRIFT						0.0 :
36		CP2	DRITT						0.0)
3%			DRIFT						0.0
38		B04	DRIFT						0.0
39			DRIFT	CDA	-2681	0	1:00537.	-514.3680	-6.76386
41			DRIFT						0.010
42	ce9	Ca9:	$\cdots \mathrm{OLAD}$	ce9	1	0	$0.00006{ }^{\circ}$. $\quad 0.0126:$	0.01256
43			DRITT			0	0.09675\%	1.2642\%	1.26418
44 4	ce10.	C010	gUAD	Co10	2658 :		0.9967 .n		0.0
45	Co11:	Coll 1 :	DRIIFT	C011:	-3502	0	1.31325.	-6.0712%	-6.07116
46			DRIFT						0.00308
48	co12	C012	OUAD	CQ12..	2390	0	1.69250 m	8.0039	0.0
49			PRIPT						0.0
W0		CTGT	DRITT						

B) DDF2 (GECONDARY P:S. READBACES) ARW GAS RDBES WITH THE POMADITY OF MORHALL READBACK.

AGS Div. Tech. Note No. 181

15-Ju1-82: 13:59

```
ALPHA, BETA, ERSILON (H,V) AT F13: -6.3308 1.9952:0.01404 0..8703 0.12799 0.0150
```


Cn\%\%	CH\%\%	$\mathrm{CH} \% \mathrm{~V}$ Z	CNTVVK	CA\%HI	CA\%IHO	CA\%VI	CA\%VO	CT\%HZ	CT\%HX	CT\%VZ	CT\%VX
-199.76	403.93	1296.98	277.03.	-1355.70	29\%7.50	-1533.36	-162.67	-33.40	62.45	-56.59	95435
BT\%HE	BT\%HX	BT\%VZ	BT\%VY	AT\% ${ }^{\text {diz }}$	AT\%HE	AT\%VZ	AT\%VX	Bindiv	TG\%GH	TG\%GV	
-1.00	62:00	3.08	32.00	854.00	224.00	-1592.00	127.00	86.52	93.04	125.76	

15-5u1-82 14:03)

ORTS PARAMETERS:

ALPHA, BETA, EPSILOT (H,V) AT F13: - 0.3388 1.9952 0.019040.8708:0.127930.01.50

 -199 an 103.09
-199.76 403.98 1296.99

2"자.03-1858.79: $2977.59-1533.36 \cdot-162.67$
2.6.03-180®.69: $2967.50-1533.36 \cdot-162.67$-33.40. 62.45

AT\%HZ AT\%HK AT\%VZ AT\%VK: BHDIV: TG\%GE: TG\%GV
CT\%VZ . CT\%VX
$-20.59 \% \quad 95.35$

DEFINITMON
HHLL WIDTH MLLS): OF HORLZ. BEAM AT NAIST NEAR'A TGTA (QTUNEPGM.)
 (HALF WIDTH (MILS) OF" VERT, BEAM AT WAIST NEAR'A: TGT. W(QTUNE: PGM:):
 (HALF WIDTH (HILS) GF: HORIZ. BEAM AT WAIST NPAR 'B' TGT, (OTUNE PGM.) (Z POS. OF; 'B' TGT HORZ:WAIST,INCH'; $0=$ 'B' TGT; $-50=50$ IN. UPSTM 'B') (HALF WIDTH(MILS) OF VERT. BRAM AT WAIST NEAR 'B'ITGT: (QTUNE PGM.) (Z POS. OF.'B' TGT VERT. WAIST, INCH; O= 'B' TGT; $-50=50 ;$ IN. UPSTRM 'B'T) (1000 TIMES BEAM HORIZ. EMITTANCE: ALPHATAT CQ5 DPSTREAM (Q TUNE USES)! (1000 TIMES BEAM HORIZ. EMITTANCE IALPHA AT CQ8 DONNSTREAM (Q TUNE USE) (1000 TIMES BEAM VERTICAL EMITTANCE ALPHA AT CQS UPSTREAM (Q TUNE USE) (1000 TIMES BEAM VERTICAL EMITTANCE ALPHA AT CQS UPSTREAM (Q TUNE USE
(1000 TTMES BEAM VERTICAL EMITTANCE ALPHA AT CQ8 DNSTREAM (Q TUNE USE)
 (Z POS. MIDDLE C LINE (IMCH FROM F13)OF FORZ. WAIGT (Q TUNE PGM USES) (HALM-FDTH (MILS) OF VERT. BEAM AT WAIST MID C LINE (O TUNEIPGML)

(HALF WIDTH(MILS) OF HOPIZ. BEAT 'AT WAIGT NEAR , C' TGT. (OTUNE PGM USES)
 (HALF WIDTH (IMLS) OF VERT. BEAM AT: WAIST NEAR 'G; TGT: (QTUNE PGF USES)
 (CALCULATED HORIZONTAL HALF WIDTH BEAM SIZE IN MILS AT "A" TARGET)
CALCULATED VERTICAL HALF WIDTH BEAM SIZE IN MILS*AT "A" TARGET) (CALCULATED HORIZONTAL HALF WIDTH BEAM SIZE IN MILS AT "B" TARGET)
(CALCULATED VERTICAE HALF WIDTH BEAM SIZE IH MILS AT "B" TARGET):
(CALCULATED HORIEONTAL HALF WIDTH BEAM SIZE IN MILG AT "G" TARGDT) (CALCULATED VERTICAL HALW WIDTH BEAM SIZE IN NTLS;AT "G" TARGET) (CALCULATED. HORZ, HALF. WIDTH BEAM SIZE IM MILS AT: T TGT. - QTUTM PGM) (CALCULATRD. VERT. HALF WIDTH BEAKISILE IN ILILS AT TU TGT. - CTUNE PGM): (1000 K GALQ. MOMENTUM DLSPRRSION(INGH/RATIO) AT EMD DF 8 DEG. MAGNET) (1000 X GALC. MOMENTUM DISPERSION•PRIME(MR/RATIO) AT END OF B DRG. MA) (HALT WIDTH(MILS) OF HORZ. BEAM AT WAIGT NEAR TGT: - GTUNE PGM. USES) (Z POS. QR: U TGT. HORZ. WAIST, INCH; $0=0$ TGT, ; $-50=50 \because I N$ UPSTRM U TG) (HALP WIDTR (MILS) OH VERT. BEAM AT. WAIST NEAR TGT! - QTUNE PGM, USES) ($2 \mathrm{POS} . \mathrm{ON} \mathrm{U}$ TGT. VERT. WAIST, INCH; $0=0$ TGT.; $-50=50: I N$. UPSTRM U TG)
" Q " LINE MAGNETS FROM F13 TO CITARGET

"C" LINE MAGNETS FROM T13 TO G TARGET

-- EIEMENT--			MIAGNET-			EFT.LEN
	TAmE	LABELE	KIND	croder	*	INGES
1			TRIPT		20	143.825
2	GD1	CDI	RDPOL	15 CO 0	-7	34.350
3			DRIET		0	8.085
4	CO1	CQ1	mual	N3@36	1	37.509
5			TRTMT		6)	46.500
6	C02	C02	guad	N3@48	2	49.50
7			DRIFT		0	20.500
8	C03	C03	MUAD	N3043	2	49.600
9			DRIFT		0	26.500
10	CQ 4	cos	@UAD	173036	1	
11			DRITT		0	33.125
12		AB1	DRIFT		0	106.250
13			DRIFT		0	163.750
14		BE3	DRIMT		0	106.250
15			DRIFT		0	68.750
16		AP1	DRITI		0	122. ${ }^{\text {en }}$
17			WRITT		0	15.500
18		CP1	$\mathbb{D R I F T}$		0	122.500
19			PRTMT		0	70.024
20		AD2	DRIFT		0	96.000
21			DRIET		9	22.191
22		A1D3	DRIET		0	96.000
23			DRIFT		(1)	434.033
24	CD2	CDs	RIPPOL	5C90T	8	91.500
25			DRIFT		0	84.501
26	CD3	CD3	RDPPOL	5C90T	8	91.500
29			DRETPT		${ }^{6}$	24.650
28	CQ5	C05	QUAD	- 4016	3	17.200
29			DREIT		(9)	184.800
50	C06	G96 ${ }^{\text {a }}$	mud	4016	2	1 C .200
31			$\mathbb{T R I P T}$		(3)	6.800
32	cas	Cor. ${ }^{\text {c }}$	\because QUAD	4016	3	18.200
33			DRIPT		0	124.809
34	Ces	C08.:	; OUAD	4016	3	17.200
35			MRIPT		0	229.150
36		CP2	DRIPT		0	122.503
37			DRIPT		0	248.897
38		RDA	DRIPT		0	92.509
39			DRIPT		0	256.120
40	CD4	CDIA	RDPPOL	D121	9	123.500
41			DRIFT		0	461.013
42	CQ9	CQ9	QUAD	4916	3	17.200
43			DREFT		0	601,900
dis	C010	10	Quab		4	36.0070
45			Mrint		(3)	813.570
46	cel 1	CQ1 1	\therefore QUAD	N3036	1	37.590
47			DRIFT		0	84.542
48	CQ12	CO12	QUAD	N3Q36	1	37.500
49			DRIFT		0	240.155
50		CTGT	DRIFT		0	0.000


```
WHEN REOUSTED GTUE G. }2,3.45,6, INE ;PLOT HADE IF TUNTMG OKYALL
    DEUICES AQSUNEO COHBIAHT EVEPT THE NUADS
```



```
    GFTER REDOING MLL DEULCES.
E--.-TPE E TO LEME THNLUQ RODE
```



```
3-FGN REHDS HLL BCTY%' ADO TUNES CRO-12.
4 - PGM READS ALL "BT&%" MHL TUNES g09-13.
5 --FGM READS "ATYR" ANO TUNES ARTXS AND AQS.
6 --PGM READS "UTR??" GND TUNES UQ1 I-4.4.
*wNOTE: IF TBALMG OK BUT POU. SUPPLY GATURATED, PLOT MADE BUTUALUES THED \& NOT SENT TO AGAET: \(12551=\) SATUR. TO TUNE MAKE SMAL CHANGES CLES THAN 269.
TYPE ERR TO CONTINUE
```


[^0]: Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

