Alternate conceptual lattice for the AGS - RHIC Booster

S. Y. Lee
May 1986
\section*{Collider Accelerator Department}
Brookhaven National Laboratory

U.S. Department of Energy
 USDOE Office of Science (SC)

[^0]
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Booster Technical Note
 No. 33

S. Y, Lee
may 16, 1986

ACCELERATOR DEVELOPMENT DEPARTMENT
Brookhaven National Laboratory
Upton, N.Y. 11973

```
Altermate Conceptual lattice for the
    AGS-RHIC booster
```

3.Y. Lee

Brookhaven National Laboratory
Upton, N.Y. 11973

AESTRACT

The conceptual design of the booster lattice is slightly modified to have higher superperiodicity at a differert tune. We fcund that the new lattice may have the advantage over the present proposed lattice that There is nc systmatic stop-band within the possible space charge tune shift for the proton operation. The machine can be tuned to $q=5.8$ for the heavy ion operation, where the maximum beta function is smaller(14m vs. 15.5 m$)$

The booster lattice is known to suffer a minor difficulty that the tune of the booster is operating at $Q x=Q y=4.83$, while the systmatic fourth order resonance is located at the tune of 4.5 . The Laslett tune shift due to the space charge at the injection energy of 200 MeV is of the order of 1 , therefore the fourth order resonance may be important in determining the performance of the machine. Although this systmatic rsonance can be corrected, it would be nice if cne can avoid it in the first place. In this short note we shall address the problem and study the feasibility of designing the bocster lattice to stay away from the systmatic stop band up to 4 th order. The goal can be ackieved with the machine superperiodicity 8 with the machine tune of around 6.83, where the nearest is located at $51 / 3$ (3rd) and 6(4th). Therefore the machine performance should be comparable to that of the AGS where the tune is 8.8 wioh resonances at $8(3 r d)$ and 3(4th).

II) The Lattice

The magnitude of the maximum besa function is dictated by the cell length. To obtain the same betatron functions, we shall retair the same basic asell structure as that of the reference booster lattice(ref. 1). Therefore there are 24 basic FODC sells in the booster ring, and 3 FODO cells per superperiod. To ease the extraction problem, we shall have 4 dipoles in a superperiod. Thus the dipole should have a length of 2.7 m (with a maximum B field of 1.2145 T at $\mathrm{BRHO}=16.7$ Tesla-m). The quadrupoles should remain the same length of 0.50375 m . Therefore the available space betweer quadrupoles will be 3.7 m . This may be or may not be so tight for the cells with dipoles. I consider this situation to be appropriate. The basic superperiod structure is arranged se following:

$Q D$	$Q F$	B	$Q D$	B	$Q F$	$Q D$	B	$Q F$	B	$Q D$		
	$I I$	I	I	I	I	$I I$	I	I	I	I	I	
I												

The phase advance in each FODO cell shall be 102 degree to have a tune of 6.3 for the machine. The straight section is arranged to minimize the extraction kicker strength. Since the machine is far away from the systmatio stop-bande, it can be tured for a large range of the tune. As an example, we may perate the machine at a tume of 5.83 for heavy ion to obtain a smaller betatron function amplitude. Fig. 1 shows the betatron amplitude in the superperiod at $q=6.83$. The maximum betatron function is about 15.5 m . The dispersion furction is however smaller. The sextupoles should be placed at some where in the begining of the superperiod. With these sextupoles, the chromatio variation of the betatron amplitude within $.25 \%$ is shown in Fig. 2 with two sextupoles per superperiods.

Since the machine is far away Arom the systmatic resonances, we can tune the machine to q=5.83. Figs. 3 and 4 show the corresponding betatron function amplitudes and chromatic variations. Table 1 lists the parameters and the chromatic properties of the lattice incomparison with the reference lattice.

Table 1. Comparison of bocster lattices
STANDAFD ALTEFNATE GEP. FN

SEP.FN. SEP.FN.

Circumference	1/4AGS	1/4AGS	1/4AGS	1/4AGS	1/3AGS
(m)	201.78	201.78	201.78	201.78	269.04
SUPERPERIOD	6		8	8	8
TUNE (Qx, Qy)	4.83	6.83	5.83	4.83	6.83
Phase/cell (deg) 72	102	37	72	76.5
Systmatic stop bands					
order 2	3,6,9	4,8	4,8	4,8	4,8
order 3	4,6,8	$5+1 / 3,8$	5+1/3,8	$5+1 / 3,8$	$5+1 / 3,8$
order 4	4.5,6	4,6,8	4,6,8	4,6,8	4,6,8
Magnet specifications					
BRHO(Tm)	16.7	16.7	16.7	16.7	16.7
dip.length(m)	2.4	2.7	2.7	2.7	2.4
No. dipoles	36	32	32	32	40
$\mathrm{B}^{\wedge} @ \mathrm{brho}=16.7 \mathrm{Tm}$	1.214	1.214	1.214	1.214	1.093
quad.length(m)	0.50375	0.50375	0.50375	0.50375	0.50375
No. quads.	48	48	48	48	64
quad.qradients					
QF (T / m)	3.84	12.53	11.04	9.33	
QD (T / m)	-10.1	-12.77	-11.29	-9.6	

Sextupoles without eddy current

Cx	-4.9	-8.9	-6.62
Cy	-5.3	-9.3	-6.95
$\mathrm{SF}\left(m^{2}-2\right)$	0.63	0.67	0.58
$\mathrm{SD}\left(\mathrm{m}^{\wedge}-2\right)$	-0.483	-1.38	-1.18
Axx	99	128	16.8
Axy	-57	49	-53.1
Ayy	55	110	20.3

	edd	curren		
Cx	4.04	-5.11	-0.86	4.19
Cy	-13.16	-12.68	-12.03	-13.45
SF($\mathrm{m}^{\wedge}-2$)	0.069	0.46	0.25	0
$S D\left(m^{\wedge}-2\right)$	-0.81	-1.74	-1.71	-1.35
Axx	10	53	-0.38	3.23
Axy	0.4	44	-47.6	30.5
Ayy	104	226	105	91.8
	with satur	ration		
Cx	-7.69	-10.04	-8.296	-7.51
Cy	-2.72	-8.27	-5.481	-2.8
SF(m^-2)	0.799	0.73	0.68	0.52
$\mathrm{SD}\left(\mathrm{m}^{\wedge}-2\right)$	-0. 0.381	-1.27	-1.02	-0.55
Axx	144	157	26.7	53.7
Axy	-71	45	-60.1	19.4
Ayy	47	83	3.05	21.7

(1)
(1) 4 sextupoles/superperiod at 1247 locations are assumed
(2) 2 sextupoles/superperiod at 23 locations are assumed
III) conclusion

Based on the present study, rearrangement of the lattice cell structure has the advantage of gaining the superperiod structure so that the systmatic stop-band for the operation ture can be avoided. The present study assume that the regative H ion injection through a dipole magnet will not cause any problem in the operation of the machine. In this event, we do not need a 5 m long straight section for the proton injection. Therefore separated function machine may be advantageous to have the tunability. Arrangement of the present lattice enable the machine to be tuned within a large range without encounter any systmatic resonances of the order less or equal to 4.

REFERENCES

1) Y. Y. LEE, private commurication and BNL-34989 R, AGS BOOGTER CONCEPTUAL DESIGN REPORT

Figures caption:
Fig. 1 (lower) The betatron amplitudes of the 8 superperiod booster machine is shown here. Note that the dipole length is $2.7 \mathrm{~m} * 32$ in the whole ring. The tune is 6.8 .

Fig. 2 (upper) The chromatic variation of the betatron functions is shown in the figure vs. dp/p. The sextupole location is assumed to be at the locations of the first qf and second qd on figure 1. Two sextupoles is assumed in the present calculation.

Fig. 3 (lower)Same as that of fig. 1 except that the tune is operated at $Q=5.83$ instead of 6.83.

Fig. 4 (upper) Same as that of fig. 2 except that the ture is $Q=5.83$.

Fig. 5 Beam sizes (assuming emittance=50 pi mmmrad and dp/p=.25\%) for $q=6.83$ and $q=5.83$ respectively (upper and lower).

Fig. 6 The corresponding betatron functions and beam size at $\mathrm{q}=4.83$.

116
booster lattice

ㅁ tetox
$+{ }^{5(m)}$ betay
$-\quad x_{F}$

Fig. 3

BOOSTER LATTICE

$q=5.83 \quad p=8$

Fig. 5

BOOSTER $P=8 \mathrm{C}=1 / 4 \mathrm{AGS}$ LATTICE

rig. ϵ

[^0]: Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

