

BNL-105118-2014-TECH

Booster Technical Note No. 71;BNL-105118-2014-IR

EDDY CURRENT HEATING OF BOOSTER DIPOLE VACUUM CHAMBER

B. McDowell

January 1987

Collider Accelerator Department

Brookhaven National Laboratory

U.S. Department of Energy

USDOE Office of Science (SC)

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

EDDY CURRENT HEATING OF BOOSTER DIPOLE VACUUM CHAMBER

AD Booster Technical Note No. 71

B. McDOWELL
JANUARY 21, 1987

ACCELERATOR DEVELOPMENT DEPARTMENT

Brookhaven National Laboratory

Upton, N.Y. 11973

INTRODUCTION:

This report covers two experiments performed to determine the magnitude of eddy current heating of the Booster dipole vacuum chamber. Results are presented for insulated and uninsulated chambers.

In the results section graphs of temperatures vs. time illustrate thermal gradients and terminal temperatures encountered. Also included are the calculated values of heat generation, convection and conduction.

Raw data and sample calculations are included so the reader may verify the assumptions made.

BACKGROUND:

The vacuum chamber used for the tests was manufactured from 14Ga. (.075") Gr 316L stainless steel. The dimensions of the chamber are shown in Figure 1.

Two separate experiments were performed to the vacuum chamber section described above. In the first experiment the exterior of the chamber was uninsulated. In the second run the chamber was insulated with three layers of "Ultra Insulation K" (Oike Industrial Co., Ltd). Figure 3 gives a detail of the insulation. In both cases the interior of the chamber was tightly packed with fiberglass insulation to simulate vacuum.

Thermocouples were used to measure temperatures during the tests. Location of the thermocouples for both cases are shown in Figure 2.

The test specimen was loaded into the dipole test magnet and the magnet powered with the current excitation shown in Figure 4.

During the test, temperatures were recorded at five minute intervals for 120 minutes and 285 minutes respectively.

After powering the insulated sample for 285 minutes power to the magnet was terminated and the specimen allowed to cool in place. During cooling, temperatures were measured at one minute intervals.

The data collected during cooling of the insulated chamber was used to calculate convection and conduction coefficients in the absence of the unknown heat generation.

The calculated convection and conduction parameters were then applied to the powered data to determine the heat generated by eddy currents.

RESULTS:

Measured temperatures around the chamber ¼ circumference are presented graphically as a function of time for both insulated and uninsulated data. Circumferential thermal gradients and terminal temperatures are of particular interest.

At the given excitation, power dissipation for the vacuum chamber is 32 watts/linear ft. of chamber.

Power dissipation was calculated for 32 different time intervals between the insulated and uninsulated data. Repeatability over a wide range of temperatures was excellent (see Tables 2 and 3, calculations section).

The conductive resistance of the insulation ($R_{\mbox{\scriptsize K}})$ was found to be 0.776 $^{\rm o}\mbox{\scriptsize K/watt-linear}$ ft.

The mean convective resistance (\bar{R}_{hc}) within the magnet aperture is 0.890 °K/watt-linear ft. Convective resistance is assumed constant for a surface temperature range of 30-55°C.

FIG.1

UNINSULATED CHAMBER

PT - POLE FACE

INSULATED CHAMBER

- .TA-AMBIENT
 - PT-POLE FACE
 - * EXTRAPOLATED FROM PREV. TEST

THERMOCOUPLE PLACEMENT

FIG. 2

INSULATION OF CHAMBER

FIG. 3

CURRENT EXCITATION

FIG. 4

CALCULATIONS:

Based upon temperature gradients observed and chamber geometry the average chamber temperature $\bar{T}_{\rm SS}$ is taken as;

$$\bar{T}_{SS} = \bar{T}_{D} (.2) + T_{B} (.8)$$

During cool down of the chamber;

Qout =
$$\frac{\rho V C \rho \Delta T_{SS}}{\Delta t}$$

V - Volume of 1 foot section of chamber = $2.7867 \times 10^{-4} \text{ m}^3$

 ρ - Density of stainless steel = 7817 $^{Kg}/m^3$

 $C\rho$ - Stainless steel specific heat = 461 $J/Kg^{\circ}k$

 Δt - Time increment = 60 sec.

Conductive Resistance (R_K)

Qout
$$\uparrow \stackrel{\overline{T}_{i}}{\underset{T_{ss}}{\nearrow}}$$

$$R_K = \frac{\overline{T}_{ss} - \overline{T}_i}{Qout} (\circ K/watt - linear ft)$$

$$\overline{T}_{i}$$
 - average insulation temperatuare = $\frac{\overline{T}_{E} + T_{F}}{2}$

Convective Resistance (Rhc)

Qout
$$\uparrow \neq \frac{\overline{T}_a}{\overline{R}_{hc}}$$

$$\bar{R}_{hc} = \frac{\bar{T}_i - T_a}{Qout} (\circ K/watt - linear ft)$$

 $\mathbf{T}_{\mathbf{a}}$ - ambient temperature within magnet aperture.

	TABLE 1												
	CALCULATION OF R _K AND R _{he} From Cool Down Data												
Time	$\bar{\mathtt{T}}_{\mathtt{D}}$	т _В	$ar{\mathtt{T}}_{\mathrm{E}}$	T _F *	Ta	Ī _{ss}	ΔĪss	Ī _i	Qout	$R_{\mathbf{K}}$	$\bar{R}_{ m hc}$		
(Min)	(°C)	(°C)	(°C)	(°C)	(°C)	(°C)	(°C)		$(\frac{\text{Watts}}{\text{ft}})$	$\left(\frac{\circ K}{W}\right)$	$\left(\frac{\circ K}{W}\right)$		
0 1 2 3 4 5 6 7 8 9	74.3 71.5 68.7 66.3 64.1 62.3 60.5 58.8 57.9 54.5	67.1 65.9 64.4 43.2 62.0 60.8 59.3 58.1	40.9 40.5 40.1 39.6 39.4 38.9 38.4 37.9	49.9 48.7 47.6 46.6 45.6	22.3 22.5 22.0 22.3 22.3 22.5 22.0 22.0	68.0 66.5 64.8 63.4 62.1 60.7 59.2 57.9 56.6	1.5 1.5 1.7 1.4 1.3 1.4 1.5 1.3	45.9 45.0 44.15 43.5 42.75 42.0 41.25 40.55	25.1 28.5 23.4 21.8 23.4 25.1 21.8 21.8	.843 .821 .695 .823 .853 .767 .685 .764 .736	.978 .940 .789 .947 .972 .874 .777 .883 .851		

^{*} $\overline{\textbf{T}}_F$ extrapolaited from previous test

$$R_{K}$$
 = .780 °K/watt - ft
 \bar{R}_{hc} = .890 °K/watt - ft
 \bar{R}_{T} = 1.67 °K/watt - ft

During operation heat generation (Qgen) is given by:

$$Qgen = \frac{\rho V C \rho \Delta \overline{T}_{SS}}{\Delta t} + \frac{\overline{T}_{SS} - \overline{T}_{A}}{R_{T}}$$

 $\bar{\textbf{T}}_{\text{SS}}$ and $\bar{\textbf{T}}_{a}$ defined previously are averaged over the measurement interval.

	TABLE 2 Ogen FOR INSULATED CHAMBER										
Time	Ŧ _{ss}	ΔT _{ss}	Δt	Averag	Qgen						
(min)	(°C)	°C	(sec)	sec) \bar{T}_{ss} \bar{T}_a		T _{ss} -T _a	(watts)				
5 10	30.0 38.96	8.96	300	34.48	16.8	7.68	40.6*				
20 25	50.34 54.54	4.2	300	52.44	18.0	34.44	34.7*				
40 45	62.86 64.6	1.74	300	63.73	19.3	44.43	32.4				
60 65	68.64 69.64	1.00	300	69.14	19.85	49.29	32.9				
80 85	71.64 72.18	•54	300	71.91	20.45	51.46	32.6				
100 105	73.18 73.48	•30	300	73.33	20.7	52.63	32.5				
130 135	74.52 74.52	.00	300	74.52	20.9	53.62	32.1				
175 185	75.34 75.56	.22	600	75.45	21.65	53.80	32.9				
225 235	76.10 76.30	.20	600	76.2	22.15	54.05	33.0				
275	76.82				}						
285	76.82	.00	600	76.82	22.75	54.07	32.4				

 $\bar{Q} = 32.6 \text{ watts/ft}$

^{*} Excluded as transient data

	TABLE 3 Qgen FOR UNINSULATED CHAMBER											
Time	ТD	Т _В	Īss	ΔĪss	Ta	1	Average over 5 min.					
(min)	(°C)	(°C)	(°C)	(°C)	°C)	T _{ss}	Тa	T _{ss} -T _a	$(\frac{watts}{ft})$			
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120	18.6 31.4 38.1 42.6 45.3 47.5 48.9 50.8 51.7 52.5 53.1 53.4 53.8 53.8 53.8 53.8 53.8	19.5 25.1 30.9 35.6 38.8 41.1 42.8 43.7 45.5 45.9 46.7 47.2 47.3 47.7 47.7 47.7 47.7 47.7 47.7 48.2 47.8 48.1	19.3 26.4 32.3 37.0 40.1 44.0 45.1 45.9 47.1 47.1 48.1 48.8 48.9 49.2 49.2	7.1 5.9 4.7 3.1 2.3 1.6 1.1 .8 .8 .4 .3 .5 .3 .2 .1 .2 .1 0	19.1 19.3 19.3 19.8 19.6 19.8 20.3 20.3 20.3 20.6 20.8 20.8 21.0 21.5 21.5 21.5 21.8 21.8	22.85 29.65 34.55 43.55 45.3 45.3 46.9 47.60 48.8 48.8 48.6 48.8 48.8 49.1 49.1 49.2 49.1	19.2 19.3 19.55 19.7 19.7 20.05 20.3 20.3 20.45 20.7 20.8 20.9 21.05 21.5 21.65 21.65 21.65 21.65 21.8	18.85 21.55 23.15 24.25 25.2 26.0 26.45 26.55 26.85 27.25 27.4 27.55 27.45 27.65 27.65 27.65 27.65 27.65 27.65 27.65 27.65 27.65 27.65 27.65	27.9* 31.0 32.7 31.6 31.9 31.9 31.1 30.8 31.6 31.5 31.6 31.6 31.6 31.6 31.7 31.6 31.7 31.8			

Qgen = 31.4

^{*}excluded as transient data

	DATA INSULATED CHAMBER POWERED FOR 285 MIN TEMPERATURE °C											
TIME (IN)	A1	A2	A3	A4	В	С	D1	D2	E1	E2	PT	TA
0 5 10 15 20 25 30 35 40 45 55 60 5 70 75 80 85 90 510 130 135 145 155 165 175 185 125 225 235	17.9 20.1 25.2 35.1 39.4 45.1 39.8 45.2 55.6 45.1 47.3 52.2 55.6 56.4 57.6 57.8 58.8 59.3 59.6 60.8 61.3 61.3	18.1 25.7 31.6 39.7 45.6 55.6 47.6 55.6 47.6 55.6 55.6 55.6 55.6 55.6 55.6 55.6 5	18.1 25.4 30.1 30.1 30.1 30.1 30.1 30.1 47.8 50.7 50.4 47.8 50.7 50.4	17.9 17.9 25.7 35.0 25.7 35.0 45.0 55.7 56.1 57.5 56.1 57.5	18.1 5 3 3 4 1 2 4 5 • 0 7 2 1 9 1 3 3 3 6 • 4 2 4 5 • 0 7 5 5 6 0 • 0 2 7 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	18.1 30.3 39.5 46.1 51.2 55.4 58.8 61.5 64.0 65.7 67.4 68.9 970.8 71.6 73.0 73.8 74.5 75.3 75.7 76.0 77.0 77.7 77.7 77.7	18.1 31.5 47.6 52.5 56.1 50.7 62.5 60.1 60.8	17.9 31.7 41.2 47.6 52.7 56.9 60.1 62.7 65.0 66.7 68.1 69.6 671.6 72.3 73.0 74.5 75.5 75.5 75.7 76.2 77.7 77.7 77.7 77.7 77.7 77.7 77	17.9 18.6 6.5 2 2 2 5 6.9 1 1 8 5 0 7 0 5 7 0 4 7 7 0 2 3 4 4 7 9 9 4 6 6 6 6 9 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	17.9 19.1 20.0 25.6 27.6 29.5 31.5 20.7 29.5 31.5 36.1 36.0 37.5 36.0 37.5 38.6 40.5 40.5 40.5 41.5 41.5 41.5 41.5 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.6	17.7 17.9 17.9 17.9 18.1 18.4 18.6 18.9 19.1 19.3 19.3 19.3 19.3 19.3 19.3 19	17.7 16.7 16.9 17.2 17.9 18.1 18.6 18.9 19.3 19.3 19.6 20.1 19.8 20.3 20.6 20.8 20.6 20.8 20.8 20.8 21.0 21.0 21.0 21.5 21.5 21.5 21.5 21.5 21.5 22.0 22.0
245 255 265 275 285	61.5 61.5 61.8 62.0 62.0	61.5 61.8 61.8 62.0 62.0	60.5 60.5 60.8 61.0	61.5 61.8 62.0 62.3 62.3	68.9 68.9 69.1 69.4 69.4	78.0 78.0 78.2 78.4 78.4	78.4 78.7 78.9 78.9 78.9	78.0 78.2 78.4 78.4 78.4	37.1 37.3 37.6 37.8 37.8	43.7 43.9 44.2 44.2	21.3 21.3 21.5 21.5	22.0 22.0 22.3

	INSULATED CHAMBER COOL DOWN TEMPERATURE °C											
TIME (IN)	A.1	A 2	A 3	A4	В	С	D1	D2_	E1	E2	PT	TA
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	61.8 61.5 60.1 59.6 60.1 59.6 57.6 55.4 53.2 51.5 52.2 51.5 49.6 47.9 46.1 45.4 44.4	62.0 61.5 61.0 60.1 59.3 58.3 57.4 55.2 54.2 53.2 51.2 51.3 48.3 47.3 46.6 45.9 44.9	60.8 60.5 59.8 59.1 57.4 56.3 55.2 53.0 51.0 50.3 48.3 47.3 46.6 45.6 44.9 44.2 43.4	62.0 61.5 61.0 60.1 59.1 58.3 57.4 55.2 53.4 55.2 53.4 57.4 55.2 51.0 52.0 51.0 50.0 48.8 48.1 47.1 46.4 44.7 43.9	68.4 67.2 66.0 64.5 63.2 62.0 859.3 56.6 54.4 53.4 55.5 50.3 49.3 48.6 47.6 46.9 45.9	74.5 72.1 69.6 67.2 65.2 63.8 60.1 55.9 54.7 53.4 59.3 48.3 47.6 45.6	74.8 72.1 66.7 64.5 61.0 59.6 62.7 61.0 59.6 54.9 53.7 51.5 50.3 48.6 46.6 45.9 44.9	74.0 71.1 68.4 66.0 63.7 62.0 60.1 58.3 56.9 55.4 54.2 53.0 51.7 50.8 49.5 48.6 47.6 46.7 45.9 45.1	37.8 37.6 37.3 36.9 36.6 36.4 35.9 35.6 35.1 34.4 34.2 33.7 33.4 33.7 32.7 32.5 32.0 31.7 31.5 31.3	44.4 44.2 43.7 43.4 42.7 42.5 42.0 41.2 40.8 40.0 39.5 39.0 38.6 37.8 37.8 36.4 35.9 35.6 35.1 34.7	21.5 21.3 21.0 21.0 20.6 20.6 20.6 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	22.0 22.3 22.5 22.0 22.3 22.3 22.5 22.0 22.0 22.0 22.0 22.0 22.0 21.5 21.8 21.8 21.3 21.5 21.0 21.0
22 24 26	43.2 41.7 40.5	43.0 41.5 40.3	42.0 40.8 39.5	42.4 41.0 39.8	44.4 43.0 41.7	44.2 42.7 41.2	43.4 42.0 40.8	42.7 41.5 40.0	30.8 30.3 29.8	34.0 33.2 32.5	20.3 20.1 20.3	20.8 20.1 21.3
28 30 35	39.3 38.3 35.9	39.0 38.1 35.6	38.3 37.3 34.9	38.6 37.6 35.1	40.3 39.3 36.6	40.0 39.0 36.4	39.5 38.3 35.9	38.8 37.8 35.4	29.3 29.1 28.1	31.7 31.3 30.0	20.1 20.3 19.8	20.6
40 45 50	33.9 32.2 30.8	33.7 32.0 30.5	33.2 31.5 30.0	33.2 31.5 30.0	34.7 32.7 31.3	34.2 32.5 31.0	33.9 32.0 30.5	33.2 31.5 30.0	27.4 26.6 26.1	28.8 27.8 27.1	20.1	20.8 19.6 19.8

TEMPERATURE (°C) UNINSULATED CASE									
Elapsed Time (Min)	A	В	С	D	E	F	G	Pole Tip Temp	
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 115 110	19.6 22.1 27.2 31.5 34.7 36.9 38.4 40.3 41.0 41.5 41.8 42.2 42.5 42.7 42.8 42.9 43.2 43.3 43.4 43.4 43.4 43.6 7	19.5 25.1 30.9 35.6 38.8 41.1 42.9 44.5 45.9 44.7 47.7 47.7 47.7 47.7 47.7 47.7 48.8 48.1	19.0 30.5 37.3 41.7 44.1 48.7 50.5 51.5 51.5 52.7 52.7 53.2 53.4 53.6 53.6 53.6	18.6 31.4 38.1 45.3 47.9 49.8 49.8 49.8 49.5 51.7 53.3 53.3 53.3 53.3 53.3 53.3 53.3 53	16.9 22.7 30.0 36.4 35.9 39.8 41.2 46.6 48.3 44.6 46.9 44.7 51.2 45.1 50.8 49.8 49.8 49.8 49.3 49.3 49.3 49.3 49.3	- - - - - - - - - - - - - - - - - - -	19.3 27.1 33.4 38.3 41.2 45.9 46.6 49.8 50.3 50.5 50.5 50.8 50.8 51.0 51.0	19.1 19.3 19.3 19.8 19.6 19.8 20.3 20.3 20.3 20.6 20.8 20.8 20.8 21.0 20.8 21.3 21.3 21.5 21.5 21.8 21.5	