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For treating the

Robinson instability it is important to define a
reference frame for the

voltages indulged at the gap by the beam and the
driving amplifier.

In the previous technical notes the total gap voltage has been assumed
as a sine wave and the phase of the beam is measured from the origin.

Consequently, the reference frame is as shown in the figure.
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Reference for phase: The Gap Voltage
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2) Beam Current.
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For the more physical case: beam angular length = w (radians)
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expanding integrands we obtain:

Cos (wt - ¢) Cos wt = Y% {cos ¢ + Cos (2ut-¢)}

Cos (wt - ¢) Sin wt = % {Sin ¢ + Sin (2wt-¢)}

integrating:

W)

v Zrur B e et - G-l oo s
by = % * U % %D {(g + ¢) + [2m - [%I ~¢)1} sin ¢

because wt = 2w we obtain:

a1=%pCos¢; b1=%QSinq>

and the first harmonic is as follows:

Ip [Cos ¢ /cos wt + Sin ¢ Sin wt] or

I4 >

I
Iy =3P Cos (ut - ¢)

the peak value Ip can be calculated:
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and we obtain: Ip = mnev
Collecting the results for n = 0.75 1013 and v = 4.2 106 we obtain:

1.2 1076 coulomb

q = ne =

Iave = nev = 5.04 amp.

Ipeak = ™ev =15.83 amp.
m — ~

Ij=I, = 5 nev = 7.91 amp.



3) The cavity coupling system.
it is possible to demonstrate that the equivalent circuit of the cavity,

seen from the gap, is shown in the figure.

Here R is the equivalent shunt
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%E = Resonant frequency

We define: wd

Qu = weRC = Cavity Quality Factor.

The meaning of the quality factor is as fcllows:
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and it is the ratio, multiplied by 2w, between the stored energy and the

energy wasted per cycle.

The quality factor Q is a very important parameter because while L and C can
be very difficult to define and to measure in a cavity it is very simple to

measure the power losses, the resonant frequency and the quality factor.
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Solving we obtain:

C = _QQ_
woR
R
L= woQo

From the above formula we obtain:
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Normally the function D(w) = g— - %Q = dissonance is expanded around w=wqy and
o]

we obtain

Dlw) = 2 2 4+ ..
Wo

Where Aw is the deviation around w=wy and can be either positive or

negative.
. " VYo
For ; AW+Qy = = 0.5 we obtain [Z|= R/ 2 and consequently BW = o, 1s the
= )

conventional band width of the mode. If we define a tuning angle V¥ as

Tan ¥ = Q ( £ - % ) = 2Q Ly we can write:
(L)O w LL)O
-j¥ -j
Z = Re =RCos ¥ e
V1 + TaR ¥



At this point we consider the cavity coupled to the power amplifier.

It is at least reasonable to suppose that the amplifier loads the cavity
1
with his own output impedance Z = 1/(G+jB). Where p = G is the amplifier

output resistance. (p depends both upon the amplifier scheme and the

operating class.)

In this case the scheme of the cavity coupling system, in the

neighboring of the operating mode, is again a parallel tuned circuit.
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This new circuit has a parallel shunt resistance Rr = pr a resonant fre-

quency wy and a quality factor Q.

Consequently the equivalent parameters of the cavity coupling system

are:

R Q
R H = H = _LA—
T b wpQy, ¢ wpRT

The quality factor of the cavity loaded by the amplifier is sometimes

referred to as the "cavity loaded quality factor'.



L tentative set of parameters for a single unit of the cavity can be as

follows: (22.5 kV at the gap).

Frequency 2.4 MHz 4,2 MHz
Power 24 KW h7 KW
Quality Factor 64 56

and the equivalent RLC parameters are:

vp = 2.4 106 ve = 4.2 100

R = 10.5 K R = 5.3 Kq
L = 1 uH L = 3.6 WH
C =40 pf C = 400 pf

4) BEAM LOADING

With the reference already chosen for the phases the complex amplitudes
of the cavity voltage G, of the first harmonic of the beam current f1, of the

amplifier current fa are as follows:

Vo= Voe-Jﬂ/z; I = -Ibe_3¢; I, = Gm’\lgeJE

where Vg is the modulus of the driving voltage and £ is the appropriate phase

angle. From the equivalent circuit we have:

— .. L I =J¢ 4 & Jé
JVo LBT + 3 [ wC oL j = = Ipe + GmVge

Now because the amplifier should see a real load (even if not matched) we
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should input the condition: Iy = GmVge JT72 and we obtain:
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Equating the real and the imaginary parts we obtain:

\') .
GmVg = ﬁ? + I, Sing

and the following has to be noted:
a) For ¢ = 0, the so called storage mode, the beam is in quadrature with the

cavity voltage.

This means that the beam does not absorb any real power (sin¢=0) and full
compensation is required.

Because AC is negative then the cavity should be tuned high.

b) For ¢=w/2, not applicable to any synchronous accelerator, the beam is in
phase and absorbs real power. On the other hand, no reactive compensa-

tion is needed.

c) 1In the intermediate case of the Booster, ¢=17 degrees, we have:
Vo = 22.5 KV; Ip = 7.91 AMP.

From the above formula we obtain:

t

vi = 2.6 10° Hz ACy = 22.3 pf

Il

vo = 4.2 100 Hz ACp = 12.7 pf
The power absorbed by the beam is easily calculated. Iq = Ip Cos (wt-¢)

then:
T . . ‘
Wp = = J vo s8in wt « Iy Cos (wt=-¢) dt
o

Expanding the integrand we obtain:

Sin wt « Cos (wt - ¢) = Sin wt Cos wt Cos ¢ + Sinwt Sin ¢

]

1

Y, {Cos ¢ Sin 2wt + (1 - Cos2wt)Sin ¢}



Substituting and integrating we obtain:
Wb = 1/2 \)OIb Sin ¢
In our case: V5 = 22.5 KV, Ip =7.91 A, Sin ¢ = 0.292 and we obtain Wp = 26

KW per gap.

NOTE: Because we suppose that the cavity voltage is perfectly sinusoidal
then it follows that only the first harmonic of the beam current can
exchange real power with the cavity and the above formula is perfectly
correct. The formula normally used: Wy = V45 Igye Sin ¢ is valid only
for extremely tight bunches where the amplitude of the first harmonic

of the beam current is very near to 2 Igye.
5) ROBINSON INSTABILITY

It is a coherent instability that depends upon the motion of the center
of mass of each bunch,
For a beam made of a series of point charges, each equal to g, the

fundamental component of the beam current is:

2
I = Tg Cos (wt-¢) = Ip Cos (wt-wg)

where g=¢/w is the arrival time of the beam.

Longitudinal stability is obtained if at the arrival of the bunch (t=g)
the slope of the voltage is positive (or negative above the transition).

For this reason we calculate this slope as function of the phase of the

beam. (¢=wt)



By superposition we have:

V=12 (I, + ;) = RpCos ve 3¢ (I, + 1)

expanding:

M
_ . -J= .
V = RtCosY¥ e J¥ {Gnge 2 . Ipe ch}

coming back to the function of time we have

L
- =J5 . .
V (t) = Re {RTCOSW e ‘]\P[Gnge 2 _ Ipe Jwg ]ert }

where Re { } is the operator that takes the real part of a complex quantity
and wg = ¢o5 is the phase of the beam.
After a little algebra we obtain:
V (t) = RpCos¥ {GmVg Sin (¢p-¥) - Ip Cos (¢-¢o-¥)}

For ¢ = ¢o  V (¢o) = RpCos¥ {GmVg Sin (¢o-¥) - IpCos (¥)};

v (¢0) = %%S y g%ﬂ = RrCos ¥ GmVg Cos (¢o = V) %%Q

and the threshold of instability is reached when v (¢0) = O
Consequently the longitudinal stability is lost for:
¥ = ¢o= m/2

For compensating the beam loading we already made:

1 I,Cos¢
wC = = = -
wL Vo

And the tangent of the tuning angle is:

TAN ¥ = - BIE$EQ§Q

from the above condition it follows:

_ BrIpCos¢ . Sin [¢-m/2]
Vo T Cos L[¢-n/2]
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eXpanding we obtain:

v
< —Q
Rt = T Sing

where RT 1s the total shunt resistance seen by the beam when it crosses the
gap.

For each gap of the Booster we have V5 = 22.5 103, Ip = 7.91, ¢ = 17°
and we obtain:

Rt £ 9.7 KQ

We conclude that the cavity shunt impedance is low enough for taking
care of the Robinson instability. This means that any configuration for the
driving amplifier is acceptable because at the injection even an output
impedance of the driver so high as 30 KQ is enough for reducing below 9 K@
the total shunt impedance of each gap.

From the above equation we have:

1 IpSing
Rt - Vo
V.2
Multiplying both sides by —g— we obtain
Ve
-0 - _ i
2Ry - 2 VolpSing

and if Ryt 1s the cavity shunt resistance than it follows that the power
delivered to the beam is equal to the one wasted in the cavity.

Fortunately R is a parallel resistor. The cavity shunt resistance and
the amplifier output resistance both contribute to the value of Rr.

This is the reason why a careful choice of the final amplifier can
alleviate the condition set by the Robinson instability.

It is to be noted that the value of the gap capacitance do not play any
role when the steady sinusoidal conditions are reached. Vice versa the value
of the equivalent capacity of the cavity is determinant under transient

conditions.
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