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AIR ACTIVATION IN THE BOOSTER TUNNEL

A. J. Stevens

I. Introduction

One of the radiological problems in any accelerator is the production of
radioisotopes in air. The primary concern is not activation of air within
the tunnel confines, where access is controlled, but the migration of the air
to the "outside world". This note does not address the migration problem, but
confines itself to an estimate of the isotopes produced by beam loss.

II. CASIM/Booster Shielding

The basic tool used in calculation presented here is the hadron cascade
computer code CASIM, developed by A. Van Ginneken at FNAL. (1 The model used
in CASIM to simulate particle, nucleus interactions (Hagedorn-Ranft) haszfara-
meters adjusted to fit experimental data between ~ 19 GeV and 400 GeV.( ) A
question naturally arises as to how low in energy CASIM can be used with con-
fidence.* To address this question, a CASIM shielding calculation was made
to compare with the calculation made b¥ P. Gollon.(3) The latter calculation
was made from a formula given by Tesoh %) wnich is advertised to be reason-
ably accurate in the 50 MeV - 1 GeV range. In support of this claim, Tesch
compares his formula to results of detailed Monte Carlo calculations of
Alsmiller (5) and others and finds agreement to within a factor of 2 or
better. Alsmiller(® , in turn, compares his calculations to measurements (of
dose) which exist for lateral depths up to 10 feet and finds agreement to
better than a factor of 1.5.

Results of the CASIM, Tesch comparison at 1.5 GeV are shown in Fig. 1.
On the left hand ordinate of this figure is shown the quantity directly calcu-
lated by CASIM which is the maximum star (interaction) density per interact-
ing proton as a function of depth in soil.**¥ On the right hand ordinate is
shown mrem/hr per 1010 interacting protons per second. Conversicn of star
density to dose is accomplished by application of the factor:

1 Rem = 9 x 10'6 Stars/cm3

¥ "with confidence" generally means accuracy within a factor of 2 or 3 given
a geometry which corresponds to the actual experimental conditions.

¥* "s0il" is defined as a medium with Z = 10.6, A = 21.2, p = 1.8 g/cc. The
atomic number and weight were obtained from analysis of 6 soil samples on
the BNL site.
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better agreement at smaller depths as shown. Given the discussion of errors
in the preceding paragraph, the agreement is quite satisfactory.

A comparison was also made at 200 MeV (Booster injection energy). At
this energy, the agreement was very poor; at 17' depth CASIM over estimates
the dose by a factor of 200 when compared to Tesch. This is less likely to
be due to a failure in the CASIM model as to the fact that CASIM assumes con-
stant (high energy) cross-sections which is drastically incorrect for cascade

nucleons below ~ 100 MeV,
III. Spallation Cross-Sections in Air

We have taken the composition of air to be: Ny (78.08%), 0» (20.95%),
COo, (0.03%), A (0.93%), and have ignored trace (order of parts per million)
elements. The fraction of interactions for the elemental species given an
interaction in air is proportional to the number of atoms of each species
present per unit volume and is the following: N (.784), 0 (.211), A (.005),
C (.00015). '

Spallation cross-sections are taken from the air activation study at
CERN.'77 Table I below gives the isotopes, cross-sections, and half-lives
from that study.

IV. Isotopes Per Star

As mentioned in Section II, CASIM calculates star densities. The iso-
tope production per star can be calculated from the ratio of the cross-
sections given in Table I to the air inelastic cross-section (280 mb) multi-
plied by the probability of interaction with the 1isotopes parent given an
interaction in air; the elemental species fractions given in Section III.
The result is shown in Table II.

no



TABLE I (From Ref. (7))

Parent Isotope Half-Life Cross-Section (mb)

N 13N 10m 10
e 20.4m 10

TBe 53.6d 10

3H 12.2y 30

0 150 2.1m 40
149 Ths 1

13N 9

HC 5

TBe 5

34 30

A 353 87d 23
32p 14.3d 25

281 2.3h 13

22Na 2.6y 10

C 11C 30
TBe 10

3H 10

TABLE II Isotope Production Per Air Interaction

Isotope No./Star
353 .0004
32p .0005
281 .0002
22Na .0002
150 . 030
4o .0008
13N . 035
e . 032

TBe . 032
31 . 107



V. CASIM Calculation

The geometry of the calculation is shown in Fig. 2. Cylindrical sym-
metry is assumed. A 1.5 GeV (2.251 GeV/c) proton is forced to interact in
the Zmm Fe beam pipe.  The iron shown is a reasonable approximation of a part
of a Booster superperiod, but the actual existence of magnet fields has been
ignored. The representation of air in CASIM is a medium with Z = 7.2,
A =144 p=0.0012 g/ce.

The result of the calculation is a total star production in air of 0.02
per interacting proton. There is negligible star production beyond the bound-
ary of the calculation shown in Fig. 2.

VIi. Argon M1

The calculation of isotopes produced by "high energy" spallation reac-
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matter. This is precisely the assumption which is made in the stars to dose
conversion mentioned in Section II and is discussed more fully in Ref. (6).

The second assumptlon is that the thermal cross-section (which actually falls
as 1/velocity) is nstant to 1 ev.

termines, from Fi

With these assumption

S; e i
that the ratio of neutrons below 1 ev to the hadrons con
0.U5. ‘

The production of b1a per CASIM star is then .005 x .45 x 610/280=0.005.
Multiplying by the 0.02 stars per interacting proton gives 107 -4 “1A per
interacting proton. For 1 interacting proton per second, this number is also
the activity at infinite irradiation time. Expressed in Curies (1 Ci = 3.7 x
1010 disintegrations/sec), the result is 2.7 x 10715 ci per interacting 1.5

GeV proton per second.

>

A measurement (8) op 414 production made at the PPA at 3 GeV can be
compared with this calculation, although some assumptions are again required.
The direct measurement was of activity in Argon at 1 meter from a 1%" Pb tar-
get bombarded with 1.5 x 1010 p/sec. The activity varied with angle with
respect to the target but was "typically" 7 x 1072 u Ci/cc of Argon (Fig. 5
of Ref (8)). Correcting for target length (0.18 interaction lengths) and
energy, one obtains 1.3 x 107¢¢ Ci per cc of air per interacting 1.5 GeV pro-
ton per second. If one further assumes this activity is constant over the
volume of air containing 90% of the CASIM stars, we have an air volume of -~
9.7 x 107 cec which gives 1.3 x 10'14 Ci per cc of air per interacting proton,
a factor of 5 greater than the calculation above which is certainly reason-
able agreement considering the assumptions made.



VII. Beam Loss Rate

For the purposes of safety related calculations, the Booster beam
losses are assumed to be:(9) 6 x 1011p/s at 1.5 GeV, 6 x 1011p/s at .75 GeV,
and 1013 p/s at 200 MeV. Assuming scaling by energy, the effective loss at
1.5 GeV is 2.2 x 1012 p/s.

VIII. Activity

Multiplying the isotopes per star by the number of stars and the loss
rate gives the rate of isotope production which, as mentioned above, is also
the activity at infinite irradiation time. In order to take into account
beam dump losses, we have multiplied the loss rate given in Section VII by
1.34; a factor equivalent to 1 full beam dump every 4 pulses on a 95%
efficient dump - i.e.- a dump which contains 95% of the spallation stars.

The results are shown in Table III below. For 414 we have averaged the
two methods described in Section VI.
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