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COMMENTS ON SYSTAMATIC RESONANCES, SPACE CHARGE AND PERIODICITY

BOOSTER AT INJECTION

Kinetic Energy
Betatron Acceptance (Vert)

Intensity

CONCERNS:

Space Charge Limit
Eddy Currents
Chromatic Sextupoles

Systematic Resonances

"STANDARD" LATTICE:

Periodicity 6 (see later)

Qq = 4.82, Qy = 4.83

A. G. RUGGIERO
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1986

PROTONS

200 MeV
50 7 mm.mrad

1.5 x 1013
in 3 bunches



BEAM DIMENSIONS

€y = €y = 50 m mm.mrad  (full)
Ap/p =+ 2.5 0/ (full)
QF QD
BH 13.865m 3.5754m
By 3.7033 13.644
Xp 2.9515 0.54004
2d
\ 2o
\ /
a
a 26.12mm 13.37mm
B 13.61 26.33
d 7.33 1.35

Va2 + a2 27.14 13. 44

The beam is "round"



SPACE CHARGE LIMIT

(round beam)

Ns.c. 4B
= 2 — =
- (BY<) 3roF AQ ey = (BY) ¢
Kinetic Energy 200 MeV
B 0.56616
Y 1.2132
re 1.535 x 10718 p
F 1
Be 0.5
AQ 0.250 0.375
Ng.c./ey 9 x 1016 n~1 13.5 x 1016 p=1
€ = €y 50 75 50 75
7 mm.mrad
Ng.c 1.0x1013 1.5x1013 1.5x1013  2.25x1013




Qn
Qv
Qy
3Qy
Qn * 2Qy
Qq - 2Qy
2Qy
2Qy
4Qy
4Qy
2Qy + 2Qy
2Qy - 2Qy
HQy + 2Qy
4Qg - 2Qy
6Qy
2Qy + 4Qy
2Qy - 4Qy

4.82

4.83

SYSTEMATIC RESONANCES

12

12

12
12
18
18

18

30
12
30
30

~-12

Periodicity = 6

[n Qg+ mQy - D

|

EEER

1.180
0.820
0.827

0.387

1.180
1.170
0.320
0.330
0.325
0.005
0.177
0.397
0.180
0.173

0.387



CHROMATICITY, SEXTUPOLES AND EDDY CURRENTS

Natural Chromaticity (H,V) -5
(without eddy currents)
With Eddy Currents: €H +3 (+8)
€y =13 (-8)

SEXTUPOLES STRENGTH TO CANCEL CHROMATICITY WITH EDDY CURRENT

SF ~ 0.1

SD 1.0

Very asymmetric
Very large average contribution (from E.C.) which enhances 2Qg =~ 2Qy = 0

resonance.

SUGGESTION: Compensation of Eddy Currents with pole face windings in Dipole

Magnets.



SPACE CHARGE
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FRANK SACHERER

(1971)

RMS Beam Envelope Equations
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"Nominal"

B - functions, (quads)
Dispersion

Dipole, Eddy Currents

Sextupole Arrangement

PERIODICITY

STANDARD

24

6 - 24

Quite Acceptable

10

COMBINED

12

12

12

12

12
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FIG. 1 The Amplitude and Dispersion Functions of the Booster Lattice,
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AMPLITUDE(m)

COMBINED FUNCTION LATTICE
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Envelope equations for a continuous beam with uni-

e charge density and elliptical cross-— sec:lon were
4rst derived by Kapchinsky and Vladxmlrsky (K-v). In
#ets the K-V equations are not restricted to uniformly
arged beams, but are equally valid for any charge dis-
51butlon with elliptical symmetry, provided the beam
wundary and emittance are defined by rms (root-mean-—
ﬂuare) values. This results because (i) the second
poents of any particle distribution depend only on the
inear part of the force (determined by least squares
pthod), while (ii) this linear part of the force in

qrn depends only on the second moments of the distribu=-
don. This is also true in practice for three-dimen-
(qonal bunched beams with ellipsoidal symmetry, and
Jlows the formulation of envelope equations that in-
Jude the effect of space charge on bunch length and
.mergy spread.

The utility of chls tms approach was first demon-
wrated by Lapostolle’ for stationary distributions.
subsequently, Gluckstern" proved that the rms version
i the K-V equations remain valid for all continuous
seams with axial symmectry. In this report these re-
wlts are extended to continuous beams with elliptical
jymetry as well as to bunched beams with ellipsoidal
iorm, and also to one-dimensional motionm. :

Moment equations

Consider an ensemble of particles that obey the
single-particle equations
X =p
&)
= F(X:t) ’
shere F(x,t) includes both the external force and the
self-force, F = Fo + Fg. Averaging (1) over an arbi-
trary particle distribution f(x,p,t), we obtain

x =p
P
vhere the last equation follows because fg = 0 by

iewton's third law. (We neglect the small magnetic self-
forces due to internal motion.) If Fo(x,t) is non-linear
in x, the second equation of (2) anolves the higher
Yments x2 of the distribution. However, for linear ex-
ternal forces, F, = -K(t)x, equations (2) involve only
the first moments x and p, and therefore the centre-of-
lass motion depends only on the external force,

X+ K()x =0, (3)
ind not on the detailed form of the distribution. In
the remainder of this paper we consider only linear ex-

ternal forces.

The second moments of f(x,p,t) satisfy the equaticns

]

=2 xx =2 ;;
Xp = Xp + % = p° - K(£)x® + xFy )
;T =2 pp = -2K(t)xp + 2 ;Es ,

here the terms_xFg and pFg
ligher moments x0 and xdp.

are usually functions of the
This is a general feature of

Sacherer
Switzerland

moment equations, namely the equation for each moment
involves the higher moments in an endless hierarchy.
However, if the self-force is derived from the free-
space Poisson equation, xFg depends mainly on the

second moments and very little, if at all, on the higher
moments. This will be demonstrated in the following
sections. The remaining term pF is associated with
emittance growth; we will avoid considering it by
assuming that the rms emittance

E=Vx*p?-%p (5)
is either constant, or that its time dependence is known
a priori. Then p° is given in terms of %%, Xxp, and E(t)
by (5), and the first two equations of (4) form a closed
set. They can be combined to give the K-V type equation:

X+K(C)X"—‘—?—=O, (6)
% X
where ¥ is the rms value, X = / %2 .

The space-charge term in this equation has an in-
teresting interpretation. If we define the linear part
of the force Fy(x,t) as £(t)x, where £(t) is determined
by minimizing the difference

D = ere(c)x - Fs(x,t)]2 n{x,t) dx (7)
for a fixed t, where n(x,t) = f f(x,p,t) dp, then
XF
e(t)x = — x (8)
)"EZ

In other words, the rms envelope equation depends only
on the linear part of the forces, determined by least
squares method.

It is convenient to put equatiom (4) into matrix

form. The assumption of constant rms emittance is
equivalent to setting pFg = e(t)xp. Then equation (4)
has the form
5 = Fg + gET (9)
where 0 is the covariance matrix
%X X
g = (10)
—_— 5
Xp P
and F is
0 1
F = (11)
-K(t) + e(t) 0 |
. . . T
Equation (9) is equivalent to J(t + dt) = Mo(t£)M where

t)

M is the infinitesimal transfer matrix M(t + dt,
I + F(r) dt.

This procedure is easily extended to two and three
dimensions. For three dimensions, the 6 x 6 correlation
matrlx includes cross-correlation terms such as ;;,
xy', ., while the 6 %X 6 force matrix F may include
linear coupling terms from bota space-charge and external
forces. The three-dimensional equivalent of (9) has

14



been incorporated into program TRANSPORT® to investi-
gate both longitudinal and transverse space-clarge
effects in transfer lines® In many cases the external
forces will not involve coupling and the cross-correla-
tion terms between the different directions will be
zero or close to zero. In this case the envelope equa-
tions reduce to the K-V form (6) for each direction.

One-dimensional envelope equations

For a beaw in free space that is very long in the
z-direction and very wide in the y-direction, only the
x-component of the self-force is important, and this is
obtained from the Poisson equation

Io;

el 4Ten(x,t) (12)
The envelope equation is
E e xt
X + K(t)x = - o, (13)

where N is the number of particles per unit area in by
Lz. This equation can be written as

. 2 24
Fermr- -2, L, (14)
X
where A; is the dimensionless parameter
© %
2 [ xh(x) dx [ h(x') ax’
—» o
Ay = - (15)
Vs
[ f x%h(x) dx]

and where h(x) = (1/N)n(x) specifies the distribution.
For the four distributions

a) uniform, hx) = % for x <1
=0 for x > 1
b) parabolic hi(x) = %{1 - x?) for x <1
=0 for x > 1
2
¢) gaussian, h(x) = % e ¥ /2
2
d) hollow, G =3 x%™ /2
the values of A, are given in Table 1.
Table 1
"+ /<
Distribution | v3 A %2 Xr | 55 A,
uniform 1 1.08 1
parabolic 0.996 1 1.01
gaussian 0.977 1.05 1.05
hollow 0.987 1.37 1.02

Thus, for the range of distributions likely to be en-
countered in practice, the variation in A; is negligible
and the rms envelope motion will be accurately described
by Eq. (14) with constant A, for example A; = 1/¥3

A second type of one-dimensional envelope equation
arises in the study of longitudinal oscillations of a
bunched beam inside a conducting pipe’. The longitudi-
nal self-field is determined by

on(z,t)

€(z,t) = ~eg ———;——— , (16)

where g = 1 + 2 1n (pipe radius/beam radius), ang the
corresponding envelope equation is

2 2y Py
z+K(t)z—:——§I—e;£¥=O, (17
where N is the number of particles per bunch and
= Y,
o =—,_l)— fzzh(z) dz ] f hi(z) dz (18)
e -

with values of Az listed in Table 1. For this case of
a shielded electric field, the envelope equation doesg
depend on the type of distribution. However, if the
forn of the distribution varies only slightly during jtg
evolution, for example remains within the range uniform-
parabolic-Gaussian, then the envelope equation (17) can
be used with confidence.

Envelope equations for continuous beams

In the absence of cross-correlations and coupling
terms, the envelope equations have the form (13) where
the space-charge terms involve the average XZy and v““
These averages will depend only on the second moments’
x and ¥ and not on the higher moments provided the
charge distribution has the elliptical symmetry

2 2
nGx,y,t) = n|=+I ¢ (19)
a?  p?
In this case the solution to Poisson's equation is
@
e, = 2ﬂeabxf n(’g/) ds 7, (20)
; (32 + S) Z(bZ + S) 2
where 2 L2
Te=—* L3 , (21)
a?+s b2+s
with a similar expression for €_. The term xt_ is there
y x
fore
(=] [-+3
_— 2 2 .2
xe = Zueabfdsf x dx J‘ dy " n(T)n[-— + —‘—’)
(a + s) (b2 + s) 2 a? b
-0 -0
(22)
which suggests the change of variables
x v
rcos £ 8 ——=———r | r sin 6 = ——=— . (23
vat + s AT v s

With the new variables, the integration over 8 can be
performed giving
<« [=2]

L 3.2
XE = ﬂaa—lj—jn(rz)ZTrr dr fn(r'z)ZTrr' dr’

4
X a+b 24
0 r
The remaining integrals can be evaluated with the help
of the definition ’

= ff n(x,y) dx dy = abf n(r?)2nr dr , (25)

-0 Q

vhere N is the number of particle per unit length.
Then

T

bjn(-rlz)ZTTr' dr’ (26)

r

Q(r) =

15



¢he number of particles within radius r, and Eq. (24)
4C0Bes
(=~
— 2ea dQ N - ' '
t'\( a + bf ' [N Q(f ):] dr ’ (27)
dr -
0
aich is easily integrated,
___ N2 23
xe, = eN‘a _el’x (28)
a+b x+y

4ing this and the expression for ye , we obtain the

‘Nelope equac10ns

. E ? ey 1
§<+1<x(:)§—:f—-——-- ~ =0
X m X +y
(29)
- E?2 eXW 1
§+K(t)y-—y—-—- =0
¥’ m X+

~ese equations are identical to the K-V equatioms if

be rms salues X, Ey, ¥, E, are replaced by the physi-
al boundary for a uniform distributiorn, namely

{= 2%, ... . However, they are not restricted to the
-V distribution but are valid for any distribution with
e elliptical symmetry (19).

Envelope equations for bunched beams

The procedure in two-dimensions can be repeated
;or bunched beams with the ellipsoidal symmetry

2 2 2
H(X:Y,Z,t) = [—_ + z— + E— y € ] (30)
a?  p*  ¢?
ke electric field is®
€, = 2Meabex j‘ 5 () dsl 7 3D
(a? + 8)72(b? + 5)72{c? + )7
0
here
2 2 2
T2 T (32)
a’ + s b? + s c? + s
ad with analogous expressions for £ and € The term
Ex can be reduced to the form z
2 ’
-— eN“Aj b ¢
< = 8,([;’;]’ (33)
X
Aere N is the number of particles per bunch and
i)
3 ds
g, = 35 34)
<73 ; T o
B (l+s) [l-+s]4[i +5J
2 2
a a

‘e integral in (34) can be expressed in terms of ellip-
‘¢ integrals of the second kind, but direct numerical
#aluation with the Gaussian integration method is

Wsier and also quick and accurate. The complete en-
2lope equation for X is

- - EKZ eZng ; ;
X + Kx(t)x - T - = gx {:— s -"] =0, (33)
X mx hid b4
vere
o 12 o0 (=<}
)= [fh(rz)r fh(rz)z-z dr [h(pzm dp
373 ! K
[ T (3%)

16

with the normalization

-]

fh(rz)r2 dr = 1

Q

37)

The parameter )A; depends only weakly on the type of dis-
tribution as shown in Table 1. Thus for practical distri-
butions, the dependence of the envelope equations on the
type of distribution can be neglected. The same state-

ment also applies if cross-correlations or linear exter-
nal coupling forces are present; in this case the more

general matrix form (9) of the rms equations can be used.

Conclusion

A rather surprising and useful result has been
found for beams in free space, namely that the linear
part of the self-field depends mainly on the rms size
of the distribution and only very weakly om its exact
form. Using this result, envelope equations for the
rms beam size have been derived that are exact for con-
tinuous beams of elliptical symmetry, and in practice
also valid for bunched beams of ellipsoidal form. The
main restriction in applying these equations is that
the time dependence of the rms emittance must be known
a priort.

Possible uses of the equations include the specifi-
cation of stationary or matched states in the presence
of space charge. For example, the periodic solutiocn of
Eq. (35) for alternating-gradient structures, including
radio frequency cavities, specifies the matched beam
size (both longitudinal and transverse) as a function
of rms emittances and intensity. The largest matched
size attainable without exceeding aperture limits or
bucket size determines a space~charge limit. For a
beam matched in this way, envelope oscillations about
the periodic solution are suppressed, although higher
modes of oscillations (sextupole, octupole, etc.) may
occur. Suppression of the higher modes will require
constraints, as yet undetermined, on the higher moments
of the distribution. Another use is the design of low-
energy beam transfer lines.
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