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1 Introduction

During the acceleration of polarized proton beam in RHIC, it will be necessary to preserve the
spin orientation to a high degree. For this reason, we must include spin tracking in simulations
and the effect of the proposed Siberian snakes.

Spin precession of the proton depends on the ambient magnetic field and thus it is coupled
with the orbital motion. The spin matrix, a rotation in spin space, provides the required rotation
of the spin and the correct angle of the precession axis. The Siberian Snake was designed to
turn the direction of spin by 180° with minimal effect on orbital motion.

The laws of physics require that the spin matrix be uritary and the orbit matrix be symplec-
tic. In fact, the entire nonlinear orbit map must be symplectic. In general it is not clear that
an approximate solution for the spin matrix and the orbital map will produce unitary matrices
for the spin and symplectic maps for the orbital part. The violation of the unitary/symplectic
condition becomes unacceptable whenever the simulation code is used in an iterative mode, i.e.,
whenever several turns of a machine are tracked. A violation of the unitary/symplectic condition
then leads to a growth or shrinkage of the phase space; occasionally it leads to more complex
but still unphysical behavior. It is this issue that motivases the present paper.

The study of spin and orbital motion in Siberian Snakes for a realistic description of the
magnetic fleld was done using a numerical approach (1. The magnetic field of the full snake was

construeted with symmetrical conditions based on the field map given numerically on the grids
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of 1/4 helical magnet. The spline function method was used to interpolate the magnetic field
in three dimensions and the classical fourth-order Runge-Kutta method was taken to integrate
the equations of orbital motion and spin precession. From the entrance of the snake, rays with
randomly generated initial conditions in an ellipse defined by the emittance, are tracked through
the snake, and a polynomial fit of the dependence of the final results on the initial conditions
was performed. Then, the spin matrix and the first order orbital matrix were obtained.

However, there are several problems in the above calculation :

1. The variables (z,2’,y, y') used to integrate the equations of orbital motion are not canonical
variables. Therefore, we cannot easily evaluate the symplectic condition using the resulting

matrix.

2. The matrix defined with randomly generated rays is, for a nonlinear system, a kind of

average matrix on which it makes no sense to impose the symplectic condition.

3. The area of the fringing magnetic field along the entrance and the exit of the snake have
to be considered as long as possible, and the fringing magnetic field between two helical

magnets needs to be taken into account too;

4. The field strengths of both the first and second helical magnet have to be adjusted so that

the spin precesses from (0,1,0) to (0,—1,0) as close as possible.

The issue of symplectic integration has been addressed by several authors [%6l. Grossly
speaking symplectic integrators can be divided into the explicit and implicit types. Most accel-
erator physics codes, of the “kick-code” variety, are explicit integrators. These codes are fast and
conceptually simple as a variety of effects can be added to them in a more or less self-consistent
way. Unfortunately, it seems very hard to produce explicit symplectic integrators for a non-ideal
magnetic field; the complexity is compounded by the absence of an analytical representation for
the magnetic field.

Therefore we have opted here to keep using an ordinary integrator from which we extract
a map. This has a small advantage: because the integrator is not symplectic, any violation of
the symplectic condition will be a reflection of the integration accuracy or the non-Maxwellian
aspects of the fields. In other words it gives us an idea of the absolute error before any symplectic
“fudging” algorithm masks it.

In this paper, to insure that the matrix is correctly computed, we abandon techniques

based on numerical differentiation in favor of the more accurate numerical method based on



the DA(Differential Algebra) approach ! pioneered by Berz in beam physics. This method
permits the calculation of a truncated Taylor map of an arbitrary element to any order. The
Taylor coeflicients of the resulting truncated map will be acurate to machine precision. However
since the magnetic field interpolated by spline function is smooth in the first derivatives and
continuous in the second derivatives, it will be possible to introduce DA methods to calculate
the map of the full snake to second order in the phase space variables without refitting the fields.

In fact, the matrices calculated from a field map are not symplectic in general. This is
a problem resulting not only from the method we used, but also from the deviation of the
magnetic field from the Maxwellian property. The symplectification for the maps obtained by
the DA approach will be introduced and symplectified maps which satisfy exactly the symplectic

conditions will be presented in this report.

2 Canonical variables (z,p,)(y,p,)({,6) and equations of orbital

motion

In reference [, the following equations of orbital motion in natural coordinates were used for

the snake from the entrance to the exit.

ds

= = 1, (1)
% —— (2)
dy /

— - = 3
= ¥ =, (3)
du 2

- = u [uvBz — (1 + v*)By + vB,], (4)
%Z = w-[(1+v*)B; — wwBy — vB;]. (5)

where w = D%z , V is the velocity of a charged particle. B;, B, and B, are the compo-
nents of magnetic field in z,y and s directions, respectively. These are simply the rectangular
coordinates along the axis of the snake. (The variable s is just the usual Cartesian z-axis)

In the field free region, the general Hamiltonian with time t as independent variable is
H = V/m?%ct + 2 P2 (6)

If we take s as the independent variable, and if we normalized the momenta by Fy, a Halmiltonian

K can be derived for the s-dependent motion:
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The canonical variables were defined in this way. Suppose, the magnetic field in the region
before the entrance and after the exit of the snake is zero, then we can find a gauge for which
Ay = Ay = 0.} Then we can convert back and forth between (z,pz)(y,py) and (z,2")(y,v)
using eq.(10) - eq.(11) or eq.(8) - (9).With these tranformations, we can still use eq.(2) - (5)

Another pair of canonical variables® is

l'=ﬂ=[1,fi']=—?—£= Lt : (12)

s 08\t -pi-p

On the other hand,
dl s 1

s v Jits2+g?

so that path-length L was calculated by

l
L:/ V1422 + y%ds (14)
0

(13)

1 A, = 0 is not necessary.
2The reader will notice that path length ! and momentum & form a complete set if and only if the motion is

ultrarelativistic. For normal motion we must substitute time and energy. This can be done afterwards on the

map of the snake.
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Figure 1: schematic view of Siberian snake and its magnetic fleld distribution on the axis

(z=0,y=0)

and it will be used in the program for getting 6-dimensional matrices. The design path-length

can be removed and non-relativistic corrections (using time and energy) can be exactly added

to the matrix if necessary.

3 The magnetic field distribution of the full snake and the

central ray

Fig. 1 gives the schematic view of the Siberian snake and its magnetic field distribution on the
axis (z = 0,y = 0). Based on the field map on the grids of 1/4 helical magnet, the magnetic field
distribution of the full snake was constructed. For the region of y < 0, the following symmetrical

conditions were used,

Bo(z,~y,s) = Bi(z,y,s)
By(z,~y,s) = By(-z,¥,5) (15)
Bs(m,—y,s) = —Bs(-z,y,s)

For another half length (s = —%— — 0) inside one helical magnet, the following symmetrical

conditions were used,

BI("xa—yws) = —-Bz(x,y,s)
By(_$a—y73) = By(—'.'L‘,y,S) (16)
Bs(_x,—y,s) = —Bs(—IE,y,S)



Magnetic field Orbital Spin

Field map | Map827.grid | z.(mm) | -0.12385485 | S, 0.00094950
B1m(T) 1.2433899 | poe(1) | 0.00000405 | S
Bom(T) 3.8813956 Ye(mm) | -0.41663179 | S, -0.00103215

ye | -0.99999902

pye(1) | -0.00006766 | $(°) | 45.00361191
) | 0.00167157

Table 1: The results of the central ray at the exit of the Snake.

For another half (s > 0) of the full snake, the symmetrical conditions were

Bi(z,y,s) = B(-2,y,~s)
By(wvy’s) = '"By(—szv—'s) (17)
Bs(wvyvs) = Bs(“z'7y7—3)

The magnetic field between two helical magnets is simply the overlap of the fringing fields of
the two helical magnets. The fringing field effect in the region of the entrance and the exit of
the snake has been taken into account as much as possible.

The field strengths of four helical magnets are set so as to turn the direction of the spin of the
proton by 180° without any effect on the orbital motion. The more important point is to make the
spin precess from (0 1 0) to (0 -1 0) as close as possible. The orbital deviation from (0,0,0,0)
for the central ray could be corrected by other way if both condition could not be satisfied
simultaneously. Based on this point and considering the symmetry Bz = —Bq, By = —Bi, the
peak fields Bim, Bam, which represent the maximum field strength of the first and the second

helical magnet respectively, were adjusted at injection (7 = 27) to be as follows,

B = 1.2433899 Tesla.

Ba,, = 3.8813956 Tesla.

Table 1 lists the results of the central ray, Fig.2 gives its trajectory and the corresponding spin

precession.
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Figure 2: the trajectory of the central ray and its corresponding spin procession.




4 Spin matrix

The equations of spin precession are

where

and

h =

Iy

u2 4+ 0241

Iy
Iy
Iy

dS;

7 B A (18)
ds

—= = SoP—S;Ps (19)
dss .

— SyPy — S: P, (20)

[~uBs+ (1 +v*)B, — wvB,] +u- Ty
[~vBs + (1 + v*)B, — wvB,y] + v - I3
[~uBy — vBy + (u? 4+ v*)Bs] + Ty

h .
B (1+ Gv),

h
E; . (1 + G)(’LLBJ; -+ ’U.By + Bs),

,Bp = mogyV,G = 1.7928456.

The axis of spin precession was calculated from the results of the integration of two groups of

spin precession (S, Sy,S5s),

where

(54,54

T y?

S4) as follows,

tang = 2=
: 2
tanf = —ie— (21
\o2+o?
7 = 65x654
s = §,-3
654 = 5§ -3¢

and 5‘}, 5.;1, s, 5;4 are the final and initial value of two groups of the spin precession respectively.

The spin matrix was obtained by sending three representative central rays with inital spin

(1,0,0),(010),(001) respectively, and taking the final results of them at exit. The result is



0.00012657 —0.00103203 0.99999946 |
Ms = | 0.00094950 —0.99999902 —0.00103215 |,
0.99999954 0.00094963 ~0.00012559
The deviation of this spin matrix from unitary is 2.7806033 x 10~°. It is very close to unitary

as required. The angle ¢ of the spin precession axis is 45.00361191°, and 6 is 0.00167157°.

5 Orbital matrix calculation by the DA approach

5.1 DA approach

Differential algebra is a technique for systematically propagating the derivatives of a function
f(z;) through mathematical transformations on f by simply applying the familiar sum, product
and chain rule of differentiation. The derivatives of any complicated function which may be
obtained by successive mapping can be calculated by extending any function f to a vector f
which contains the value of the function as the first element and the values of the derivatives
with respect to all the variables up to the desired order in the subsequent elements. These

vectors are called “DA-vectors”[19,

. b 82
f(-’L'z) — f(Xi) = {f”é—:;:f-:71—92:17f:‘23],}
= {f, Soir o fozy e} (22)

For map tracking, all phase-spa;e coordinates z; becomes the DA vectors z;. The first
element of z; contains the current value of the coordinates z;, and the subsequent elements
contain the derivatives with respect to the initial values of z;. The vectors z; are initialized by
setting the first element to the initial value of z;, the element which contains the first derivative
with respect to the ¢ — th initial coordinate is set to one and all other elements are zero. Each
mathematical operation which involves phase-space variables is replaced by a vector operation.

In our code we used the old DA package of Berz later modified by Bengtson and Forest at the
Lawrence Berkeley Laboratory. This package contains FORTRAN routines which must replace
the usual FORTRAN calls and operations whenever necessary. It should be noted that this task
is greatly simplified if the DA-package (this one or any other) is linked to a code written in a

language that allows operator overloading such as C++.



5.2 The expression of the magnetic field for DA

The force terms in the equations of orbital motion is the magnetic field, and they are given
numerically. In order to make use of DA, the magnetic field interpolated by spline function was

reconstructed again to second order as follows,
Oby(z,y,s) 4 Oby(z,y,s) Ly

Bw(mv Y, S) = bw(l‘a Y, 5) +

dz dy
1 azbw(z,%s) 2 azbw(x,%s) 1 82bw(z‘7 y,s) 2
3 e 0 T T asay T T o
... ' (23)

w=2z,Y, OF §

The magnetic field b,(z,y,s) as well as its first and second derivatives are expressed by
spline interpolation function in two steps.
1) Fitted on the plane (s = si)

Bicubic spline function was taken to fit by(z,y,s;),(w = @,y or s),(k = 1,2,...,Lg) , as

well as their derivatives at any sub-region as follows,

4
bu(e,y,88) = 3. Awijrr(z,y)(z — )y —y;)F ! (24)
K,L=1
P 4
Mg’_y’_‘s_k_)_ = > (K- 1DAwjxc(z,y)(z -z 2y — )P (25)
z K,L=1
Oy (2, Y, 3 2 _ _
Pullobost) — 57 (1= Ddugren(e,u)(e - 2y - )P (26)
Y K L=1
2 4 .
Fbulapse) 3 (K - 1)(K - 2)Awijrr(z,y)(z — )5 2y — y)" (27)
oz? K,L=1
2 4 .
Pbul®:0:34) S (5~ 1)(L ~ 1) Auiiren(e,v)(@ — 20K 2y — 5)P2 (28)
Bmay K,L=1
2 4 . .
Poul@:V50) S (L - 1)L 2)Auaen(z,1)(e - 2Ky - 4)F (29)
By K,L=1
z;<z<w Tit+1,Y; <y< Z/j+1(i =1,2,...,m=-14j=12,...,n— 1)

The coefficients A,;jx 1 are determined by one-dimensional cubic spline function,and a two

- dimensional 3-points Lagrangian function

(T2, 85) Z[H T Tm (22 Em by (0, g, 5) (30)

:— Tm Ty — Em

,3=1 m,n=1,

m#t, n;é]

10



was constructed to calculate the first and second derivatives at the boundaries.

Oz
8bw(wi’y75k) _ ,
—_—3—y—_('y =Y, Ynt = 1,2,... ,m)
62bw(m’ya sk)

dz0y

(z=21,2m;5=1,2,...,n)

(T=21,Zm}Y = Y1,Yn)
2) Fitted in s-direction

By using the coefficients A,;;xr, the magnetic field b,(z,y,s;) and its first and second
derivatives at every plane of s = s were obtained first. Then, b,,(z, y,s) and its first and second

derivatives were fitted again by one dimensional spline function in s-direction.

4
bu(z,9,8) = Y Awkn(s)(s —se)¥ 71, (31)
N=1
abw(m,yﬂs) - N-1
A S A —_ 32
o2 E1A10WkN(8)(S Sk) s ( )
4
Bu(@:9:5) - 5 go1n(s)s — sV (33)
ay N=1
azbw(xayas) _ _4 N-1
2 - Jg—__:l A20u,5N(s)(s — k)" 7, (34)
azbw($>y73) 4 N-1
W\ ) — 35
923y glAllwkN(s)(s sE) (35)
2 4
%(_:%y,_s) = 3 402 (s)(s — sp)N (36)
8y N=1

sp<s< 33+17('k: 1’2,"~7Lk)

As we can see from the formulae above, the first derivatives of the magnetic field are smooth,

and the second derivatives are continuous.

5.3 Orbital matrice to the second order by DA

The LBNL version of the DA package written by Berz was used and the program SSSTRA was
modified into a DA-version, Named DA-SSSTRA. The variables (z,z"), (y,y') and (6, L), as well
as the three components of the magnetic field were converted into DA-vector. The Runge-Kutta
integrator was also converted into DA integrator since it obviously handles phase space variables,
Then, the truncated Taylor map to second order can be obtained around any ray started from

the entrance of the snake.

11



Setting § = 0, the four-dimensional map to the second order around the central ray is

calculated, and the results for Oth and first order are given as follows,

@

[z ] [ —0.12385485 |
pe | | 0.00404683
v | | —0.41663179
| p, | | —0.0676637
[ 0.99742496 12.27518760 —0.00102426 —0.02715057 | [ z, |
—0.00041083  0.99751220 —0.00004195 —0.00387867 | | pa,
T 000300773  0.02360347  0.03446509 11.02662049 Yo
| —0.00010177  0.00608138 —0.01058291  0.93505074 | | py, |
The second order coeficients are given as follows,
:1;3 Zo * Pzo P?:o Zo Yo Pzs Yo
[ 0.00020947 0.00316546 0.00990645 ~—0.00215393 —0.01120040
0.00004617 0.00071181 0.00276977 ~—0.00036805 —0.00236419
m} 0.00056057 0.00478956 0.01465320  0.00146453  0.00255622
| 0.00008808 0.00105557 0.00408687  0.00008883 —0.00034413
o - Dy, Pzo * Pyo y? Yo * Py P2,
~0.01128183 —0.07119621 —0.00061085 —0.00185626  0.00461867 |
—0.00239398 —0.01809435 —0.00002344  0.00067186  0.00520059
0.00252052 —0.00964764 —0.00053097 —0.00741909 —0.02429417
~0.00035647 —0.00683366 —0.00009814 —0.00135330 —0.00464027 |

The unit is [mm.] for zo, Yo, and [1073] for ps., py,-

6 Symplectification

6.1 Symplectic condition checking for the first order matrix

A 2n X 2n matrix M is said to be symplectic if the matrix M

MT.J. M=1J

12



where M7 is the transpose of M, and J is the matrix

" -1 0 0 0
J = 0 . 0

0 1

0 0
-1 0

It follows from (37) that a symplectic matrix has a unit determinant. For 2 X 2 case, the
necessary and sufficient condition for a matrix to be symplectic is that it has a determinant of
+1.

The 4 x 4 linear matrix of the snake obtained by DA method is

0.99742496 12.27518760 -0.00102426 —0.02715057
—0.00041083 0.99751220 -0.00004195 -—0.00387867
—0.00309773  0.02360347  0.93446509 11.92662949

Mr =

| —0.00010177  0.00608138 —0.01058291  0.93505074

then,
¢ ME-J My -7
0.00000000E + 00 —0.20804412E — 04  0.85622196E — 04 —0.55626436E — 02 |
0.29804412E — 04  0.00000000E + 00 —0.54258057F — 02 —0.70988243FE — 01
_0.85622196E — 04  0.54258057E — 02 0.00000000E + 00 —0.64557730F — 05
0.55626436E — 02  0.70988243E — 01  0.64557730E — 05  0.00000000F + 00

The determinant of the matrix is 1 + 1.4432899 x 1014,

The results show that although the deviation of the determinant of the orbital matrix from
1is 1.4432899 x 107'* it does not satisfy the symplectic conditions completely, the maximun
error among the matrix elements is 7.0988243 x 10~2. The Maxwellian property of the magnetic
field around the central ray was checked and it was found that the maximum error is around

1072, the same order as the symplectic property of the orbital matrix.

6.2 A method for symplectifying the map

In the appendix we clarify the meaning of “symplectification.” For our purpose here, let’s

" evaluate the map of Siberian Sanke first. The map M (including second order) from the entrance

13



to the exit of the snake is nearly the map for a drift of length equal to that of the full snake.

" Therefore, construct a new map Mg, so that
M= D(g) My - D(g) (38)
D(L/2) is a drift of half length of the full snake, and
My = D"l(g) M - D“l(-;i), (39)
The linear part of the My is a matrix near the identity.
Rewrite My in the form as follows,
Mg = exp(F - V)Id (40)

where Id=identity map

Now we know that F - V is a Poisson Bracket operator if and only if My is symplectic,
F.V=:f:
Suppose § is a vector function of phase space then,
"} cfig=VfL.Jg==-Jvf.V§ (41)

Since 7 is an arbitary vector function, then

i f: = F.V=-JVf.V
F = -Jvf (42)
- /xJ-F-dx' (43)
0

If F is symplectic, then this computation involves an integral of a curl free function. Thus
the function f is unique. If Fis slightly non-symplectic, then the function f is one possible
symplectification of the vector field F, and it will depend on the path of the integration.

In the program DA-SSSTRA, a possible symplectic matrix (Mx )symp for Mg was computed
by an iterative process as follows. First we compute the vector F such that My = exp (F . V) Id.
Later we will find a Poisson bracket vector field approximating this general vector field.

Like all iterative procedure we assume that at a given step during the iteration we have

obtained a vector field Fj which is not yet the generator of M. We then compute
.’ vectorm = ezp(—F} -V) - My —Id (44)

14



@

]

as a correction to F , and check whether vectorm is close enough to zero. If not, then we set
F}+1 = F; + vectorm (45)

and repeat the iteration.
Notice that this computation does not separate the map to be symplectified into the first
and second order, so it can be used for arbitrary order symplectification. Once : f : is obtained

from F, the resulting symplectified map for My is
(M§)symp. = exp(: f :)Id (46)
and

(M)symp. = D(L[2) - (MK )symp. - D(L/2) (47)

6.3 Symplectification of the map for the Siberian Snake

The map for the Siberian Snake generated by numerical magnetic field including second order
was symplectified, and the result is given as follows,

Symplectified linear matrix

0.99742235 12.27524147 —0.00425569 -—0.02841177 ]
—0.00041110 0.99752264 —0.00008353 —0.00108963
0.00001192  0.02441573  0.93446289 11.92668196

| —0.00009117  0.00316904 —0.01058277  0.93506167

The result of symplecticity checking for the linear matrix is

0.00000000F + 00  0.00000000£ + 00  0.00000000F + 00 0.21684043F — 18
0.00000000EF 4 00  0.00000000F£ + 00  0.86736174F — 18 0.00000000F + 00
—0.22499313F — 20 —0.92157185F — 18  0.00000000F + 00 0.00000000F + 00

| —0.24563955F — 18 0.34694470E — 17 —0.22204460F — 15 0.00000000F + 00

The deviation of the matrix determinant from 1 is 2.2204460 x 10718,

15



The 4-dimensional symplectified second order matrix is
" z2 Zo ' Pz, pgo Zo* Yo Pz, Yo

0.00020872  0.00315862  0.00994728 -0.00106071 —0.00589758
0.00004584  0.00070896  0.00277490 -—-0.00018663 —0.00123443
—-0.00052941 -0.00592733 —0.01900004  0.00058169  0.00112769

—0.00093622 -—0.00125001 -0.00473489  0.00004734  0.00000969

Zo * Py, Pzs * Pyo Y2 Yo * Pyo Pgo

—0.00593241 -—0.03783892  0.00030068  0.00121178 —0.00132230 ]
-0.00124618 —0.00939109  0.00002554  0.00002510 —0.00045167
0.00111315 -0.00311945 -0.00053122 —0.00744960 —0.02442827

0.00000883 —0.00097815 —0.00009812 —:0.00135791 —0.00466336 |
Symplectification results show that there is a little adjustment for the linear map of the
snake calculated by DA to be symplectic, but for second order map, the elements corresponding
to cross terms, such as zg - py, and so on, change a lot.
m . Further work is being done to put the symplectified map into the full lattice of RHIC for

spin tracking. The accuracy will have to be gauged in an actual run.
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Appendix

There are two distinct concepts in the area of “symplectification” which are often confused. In

order to distinguish them we must introduce the concept of symplectic truncation. Consider
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a symplectic map of phase space 7.(Z,7) that depends on a parameter . If by assumption
this map is symplectic for all values of ¢, then there cannot be any issue of symplectification
associated to the map mi.. However let us assume that we expand this map in powers of ¢ to a

specified order k and denote this map by m!:
mf = T+ Tle+ - + Tkek, (A.1)

Now we ask the following question: are the Taylor series coeflicients fj, which are themselves
functions of phase space, truly arbitrary? Or do there exist special relationships between these
functions imposed by the symplecticity of the original map M.(Z,)?

Indeed we find that there exist special conditions between the coefficients of a Taylor series.
Therefore, if an approximate map is extracted as a Taylor series ordered in a parameter or
ordered in the phase space degree, it is already clear that the Taylor series coefficients will
themselves reveal the lack of symplecticity of the underlying tracking code. If the underlying
tracking code is not symplectic, the coefficients need to be adjusted. It is this process which
is described in the body of this article. Let us call this ”Symplectic Completion of the Taylor
Coefficients” and let us summarize it mathematically. We start with an almost map 7.(Z,7)

and expand it to order k:
o= WO Wle4 ... 4 Whek, (A.2)

Then, "Symplectic Completion of the Taylor Coefficients” consists in adding to each term Wi
a correction AWj such that the new Taylor expansion 7% 4 A7 to order &
k .
Bt ant = 3 (AW 4 W) (A.3)
j=0
is consistent with the expansion of a symplectic map. In this paper we will describe a simple
way to produce a symplectic completion of Taylor coefficients.

Now, there is another problem more akin to symplectic integration and it is called “Sym-
plectic completion of a map.” To understand this issue we assume that we already have a Taylor
series to order k& consistant with the symplectic condition. Secondly we would like to use this
in a tracking code and iterate the resulting map. Will the map be symplectic? The answer is
NO. It will be symplectic to order ¥ but it will violate the symplectic condition at higher order
in . Generally one must add a very large or, depending on the method, an infinite number

of powers in ¢ so as to make sure that the map is symplectic to all orders in . There is one
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notable exception to this rule and it concerns linear maps in the phase space variables. Therefore
if we extract a matrix from a nonsymplectic code, then it suffices to adjust the coefficients of
this matrix (coefficient completion) to create a true bona fide symplectic map. For higher order
maps, symplectic completion of the map is necessary but it will not be discussed here. Suffices
to say that it is possible to do either through mixed variables generating functions techniques
11 or through kick/jolt factorization (see reference [ for a marvellous piece of work on this
topic).
Symplectic Coeflicients Completion

To understand how symplectic completion of the coefficients works let us introduce the
Dragt-Finn representation for the expanded symplectic map 7i.. First we notice that the map

TO for e = 0 is symplectic. So we might as well factor it out of the problem as follow:

= mko (T'O)—1 = Id+fe+ - + 1" where # =T7 o (TO)—I. (A.4)

£

The Dragt-Finn factorization states that the residual map 7 can be factorized as follows
7 = exp(e:gy:)---exp (Ek:gk :)Id (A.5)

where Id is the identity map in phase space and the operators : g; : are defined in terms of the
well-known Poisson bracket, that is to say, the action of : g; : on an arbitrary function f is given

by
tgi f = g5, f] * (A.6)

The important point here is that the Dragt-Finn factorization is valid if and only if the expansion
7% is consistant with the expansion of a symplectic map.

£

Equivalently we can rewrite this map as a single exponent

7 = exp(e:gy:)---exp (el":gk :)Id

exp (s:fl—i—-—--}-e:kﬁrg :)Id. (A7)

In the case of the residual map it is always possible to do so because the residual is connected
to the identity through the parameter ¢. In general this is not possible unless the map is close
to the identity. (See Dragt-Lecture notes!®l)

If the map is not the expansion of a symplectic map, it is nevertheless possible to factorize

it in terms of general vector field operators rather than Poisson bracket operators:

&€

o= exp (Eél-V)---eXp (skék-V) Id
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= exp ({sfl + -+ ekﬁk} . V) Id. (A.8)
We note that the Poisson bracket operator is a special case of the general vector field operator

(f,9l=Vfl 7.9y

= —JVf-Vg. (A.9)
F

:f:g

Therefore the method described in the main part of the paper consists in first finding a general
vector field expansion for a properly defined residual map and then compute a Poisson bracket
exponent for it. If the residual map is consistant with the symplectic conditidn, this process
should be a mathematical tautology. By that we mean that any correct computation of the
Poisson bracket function, followed by a recomputation of the vector fields should lead to the
original vector fields. However if the map is slightly nonsymplectic, then a sensible algorithm
should produce a small correction in the vector field, i.e., the vector field associated to the
Poisson bracket should be a bit different from the original ones.

In our case we do not have an expansion in a parameter ¢, therefore the major difference
with the above discussion will be to first transform our Taylor map so as to bring its linear part
near the identity. On that map we will apply an algorithm which assumes the existence of a
single vector field representation. Then we will apply an iterative procedure to find this vector
field representation. Of course convergence will provide a check on the method. Then we will
extract potential candidates for the Poisson bracket operator. At that point recomputation of
the Taylor series from these new operators will produced the symplectified coefficients. (This
can be checked by yet applying the algorithm once more as it should display the tautology
mentioned above). Finally, because this algorithm is implemented strickly with the DA tools,
it is indeed order independent. The readers who are versed in these matters will also noticed
that there are an infinite number of variations possible for the algorithm: this might help if the

iterative procedure has a hard time to converge.
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