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1. Introduction

As a special kind of transport elements in storage ring, Siberian Snakes in RHIC, which consist
of four right-handed helical dipole magnets, are expected to rotate spin direction of polarized proton
to 180°, and should not affect the beam orbit at the same time, the axis of spin precession should make
an angle ¢=+45° too' ™. However, the problem is that actually they can not make the spin direction

rotate 180° perfectly, also the fringing magnetic field will affect the beam trajectories.

The simulation in Siberian Snakes based on analytical formulation (such as Blewett-Chasman
formula) of magnetic field had been well done®™. For better representation of the real Snakes in RHIC,
which are still under the construction, the simulation based on three dimensional magnetic field map
is needed. The work had been started by A.U.Luccio™, but two main problems still remain on the
optimization of the spin matrices and of the orbit matrices for the Snakes, they are:

(1) Numerical spin matrices should be unitary,
(2) Orbit matrices should be symplectic, essentially to preserve beam emittance, among other

motion integration.

On the other hand, the results of magnetic field measurement for the prototype of a helical magnet
was well agreed with those of three dimensional numerical calculation by TOSCAP., It was
encouraged to work further based on calculated magnetic field map, and to look for different methods

to solve the problems mentioned above.

2. The methods for simulation

2.1 The equations of orbit motion and spin rotation

In Coordinate system of Fig.1, the Lorentz orbit motion equations are
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components of magnetic field in x, y and s direction respectively.
The equations of spin precessionm are
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Fig. 1 Coordinate system

, V is the velocity of charged particle. B,, B,, and B, are the
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Four-order Runge-Kutta method in Cartesian Coordinates was used to
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integrate the equations

(1) - (8) in this simulation. In order to calculate the axis of spin precession, another three equations

with the same form of (6)-(8) were use

d[7]
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The idea is the following:

If a spin vector S precesses from S , tO S s (see Fig. 2.1), the axis of precession must belong
to the plane 7t bisecting the (S" 0 S s ) angle. The axis is then perpendicular to the vector 85 =8 s

S,. If we repeat the same argument for a second spin orientation S 4 the axis must be also

perpendicular to &54=38 )f -5 OA . The axis of procession S is therefore perpendicuiar both to &5

and to ('ig"A . Then

Fig. 2.1 To find the axis of precession Fig. 2.2 Angles of the axis of precession

¢, horizontal, 9, vertical

The angle are defined as (see Fig. 2.2)
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2.2 The interpolation of magnetic field

The magnetic field distribution in three components B,, Bjand B, of a helical magnet at
Cartesian grid x=x;, y=Y; and §=5, was given. The interpolation for this map was divided

into two steps:



(1) Fitting on the (x, y) plane (8 = 5, )

Bicubic spline function method was used to fit B (x,y,5,).B,(x,y,8,), Bs(x,y,s,)

(k=1,2,... L) and their derivatives in Cartesian Coordinates ,

4
B,(%,7,5) = 3, Ay (6, =2 (y—y )"

k.l=1

4
B,(x,3,5)= 2, A, (x)x—x) " (y=y )"

k.=t

4
B, (%,7,5)= 2, Ay (6 Nx=x) " (y =y )"

k.d=1
X SXS Xy, Yy SYS Y
(i=t, 2,...m-1, j=1,2,...n-1)

Where the coefficients Ay can be determined by one-dimensional cubic spline function, and the
corresponding boundary conditions
OBy (x,y]-,sk)

ox
3B, (%,,75,)

oy
9*B,(x,¥,8,)

dxdy
could be calculated by two-dimensional 3 - points Lagrangian function
3 3
X=X N YT
B.(x.y.5)= 2 []]( N=—=)1% B, (%,,¥,,5)
il mn-l X ~Xm Y™ Y

m#i
n#j

(x= xl,xm;j =1.2,...n)

(y=y,Y5i=12,..m)

(x=%,%,3Y = Y1, Yu)

(2) fitting in s - the third direction

Spline function method was used again to fit the coefficients on the plane (x, y) Ayu(s1),

Aja(52),-..-Aja(sy) 5
SA(s)=Ko+K1i(As)+ Ko As)+Ki( As)’

where As=s-5;
Ky Kii, Ky, Ksicould be calculated by one dimensional spline function fitting.

3. The construction of field distribution for full Snakes and Program SSTRAN

Two sets of magnetic field maps on Cartesian gn‘d with 5 mm (named Map827.grid) and with



2.5 mm step (named Map827fine.grid) of half helical magnet length (s=0 ~ L/2) and half space
(y20,y=0~4 cm) was provided by Dr. M. Okamura. The magnetic field on axis (x=0,y=0) is given in

Fig 3 .Then for the region of y< 0, the following symmetrical conditions are used:
B, (x,~y,8)=B, (x,y,5)
By (x:=y,8) = By (=x,y,5)
Bs(x,—y,5) = =Bs(-=x,y,5)
For another half length (s=-L/2 ~ 0), the symmetrical conditions are
B (-x,y=8)==B_(x,.5)
By (=x,y,~5) = By (x,y,5)

Bg(~x,y,~s) =—Bg(x,y,5).

The field distribution of other three helical magnets takes as follows:

B2=-BCOEF *B1 (12)
B3=-B2
B4=-B1
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Fig. 3 The magnetic field distribution of Map827.grid on axis (x=0,y=0)
BCOEF in equation (12) is the ratio of the magnetic field strength of the second helical magnet to that
of the first one. The constructed field distribution based on Map827.grid on the axis (x=0,y=0) for full
Sakes is given in Fig.4.
Program SSTRAN for integrating the equation (1)-(11) based on the calculation methods

discussed above was written in FORTRAN .



4. Simulation Results

4.1 Maxwellian property checking
By using Map827.grid and Map827fine.grid, the interpolated magnetic field from Map827.grid
was compared with that directly from Map827fine.grid, the difference between them is within 107,

Two magnetic field maps was checked to see how well they satisfy the Maxwell equations

L. oB
V~B=an+ y+aBS=O
ox ay os
- oB, _ _ JB ~
VxB=(BBS_ y)i+(an_aBs)j+( y—an)k=O
&y Os ds ox ox d

too. The first derivatives were directly calculated by the coefficients of spline function Ajy , the
results were listed in table 1. It was seen from Table 1 that the scale B is well satisfied (10'6) in the
region around the axis, the error of curl B mainly comes from (§‘7 X E) .» it may be due to small value

of Bs and rapid change with y.
Table 1. The results of Maxwellian property checking on Map827.grid

Point coordinates Magnetic field strength V.B
(T/m)
(m) ¢y) VxB
V- B = 45709596E — 6
Fringing point: Bx=0.0698596 (V x By, =—6.304323E -3
(0., 0.,0.02) By=1.33392 (V x B) y = 4.0081994E -3
Bs=0.000000145 (Vx B); = -9.4958265E — 5
V. B = 49906576 E - 6
inside point: Bx=0.511353 (Vx B), =—2.0883111E -2
(0.0.0.15) By=-1.23405 (Vx B)y = ~4.0178569E - 3
Bs=0.000000839 (V x B)g = -2.1633758E — 4
V. B =7366029E -3
point far from axis Bx=0.51472201 (V x By, = ~2.2103902E -2
(-2.5,2.5,0.15) By=-1.24078 (Vx B) y = 2.6094199E -3
Bs=-0.047527853 (Vx By = —4.9999588E — 2




4.2 Optimized BCOEF

The ray with initial conditions of (x,,X,,y,,¥,)=(0.0.0.0)and (S, .S, ,S,)=(010)
was traced through the full Snakes and optimized for BCOEF based on numerical calculated magnetic
field of Map827.grid. BCOEF was adjusted automatically so as to get the final orbit angle x;, y; as
small as possible and Se_v as closed to -1 as possible ( spin direction turn over 180°). Take the fringing

magnetic field into account, the magnetic field from 0 ~ 1.312 m ( this is the length of Yoke) was
taken from Map827.grid. The optimized BCOEF obtained is 3.09557299 when the amplitude of the
field strength of the first magnet is 1.33626 T. The resuits of the final orbit and spin precess were
listed in table 2 together with those based on Blewett-Chasman field formulas™ for comparison, the
trajectory and spin procession in full snake were shown in Fig. 5 and Fig.6 respectively.

Table 2. The results of the trajectory with initial condition of ( X, , X, , ¥, ¥,)=(0.0.0.0) and (S,, . S,, . S, )=

(01 0) when the field strength of the second magnet is at optimized value.

Filed Map827.grid Blewett-Chasman
Results formula
B 1.336260 1.336260
Brem 4.136490 3.987906
X (mm) 0.24 -17.557
x’(mrad.) 0.01111 -1.58361
y (mm) 046 20
y’(mrad.) -0.08429 0.15085
Sx 0.01553612 -0.06402582
Sy -0.99973410 -0.99512058
Ss -0.01704195 0.07528736
o) 51.47374108 4598502244
o) -0.04410307 0.99667815

4.3 spin matrix

With the same initial orbit of (x,, x'o v Y, y;) = (0. 0. 0. 0.) , three representative rays with

initial spin S ,=(100),(010)and (00 1) respectively were traced, then spin matrix could be directly

got by the final precessed spin. At the optimum value of BCOEF=3.09557299, that is B1=1 33626 T,
B2=4.136490 T, the spin matrix
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Fig. 4 The constructed field distribution of full Snakes on axis (x=0, y=0)

0.22415978 -0.01312770 0.97446405
Mg =]|001553612 —0.99973410 ~0.01704195
097442862 001895950 -—0.22389618

The determinant of Ms: det[Ms] = 1.00000014777028
Idet{Ms]-11 = 1.4777028E-7
The dependence of the matrix elements on particle position and angle was investigated too.
The calculation was repeated for different values of (x,, x; Yoo y; ). The spin process of some of

the rays with large r (r>3.0cm) rotate unregularly, but most of them turn out to be very close to each

other, and the determinant of their matrices have the same order (1.E-7).
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Fig. 5 The trajectory of the ray with (X, , x; 2 Yos y;) =(0.0.0.0.)
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4.4 orbit matrix
The calculation of orbit matrix My is more complicated than that of spin matrix. To calculate My, a

certain number of rays, whose initial conditions were generated by random with Gaussian
distribution in the components of (xo,x; WY y; ), were tracked. By solving a system of algebraic

equations between the final and the initial coordinates of the same ray, a transformation expressed as a
power expansion truncated to a pre established degree can be found. In this simulation, we are
interested in a 0.th order 4x4 matrix. The problem has the same sense of general linear least squares,

®) was taken to get elements of the matrix .

the solutions by use of the normal equations

It was found that the results largely depend on the number of the rays traced, The more the rays
traced, the better the results.

After the number of the rays over 16, the matrix calculated is getting stable, the following is the

result from 16 rays traced,

099391892 1082810815 —001694592 —0.03364342

| -000429513 096566983  0.00604201  —0.00743476
or 7| 000061034 016304712 098440460 10.67164840
0.00060338  0.06262435 —0.00489109 0.94845089

The determinant of M,,: det[{M,,] = 0.99508166E+00
Idet[M, ]-11 = 4.91834490E-03

5. Conclusion

One set of methods have been setup for simulation in Siberian Snakes, and the results for numerical

calculated magnetic field of Map827.grid is good, but further work should be done in next step.
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