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1 INTRODUCTION

The relation between the rotation angle and the cancellation of the integral of transverse field along the
beam axis is investigated. First of all, the simple optimization method for the full-size helical dipoles is
studied on the assumption of the linearized relation for the beam axis coordinate dependence of the dipole
field and the phase of the dipole field. In this analysis, the optimum length of the helical dipole is
calculated as a function of the phase changing rate of dipole in the end, which can not be simply predicted.
This optimization method is not so accurate for the real estimation, but it is understandable and effective
for the rough estimation.

Secondly, the optimization method for the helical dipoles with the known end is studied. Actually, the
optimized length for the full-size helical dipoles is obtained for the measured field of the prototype helical
coil. In addition, the field integral along the beam axis is estimated for the full-size helical dipoles
consisting of the optimized helical body portion and the non-symmetric ends of the prototype helical coil.

2 DEFINITION OF THE ROTATION ANGLE FOR HELICAL DIPOLES

Though the dipole field of helical dipole coils rotates, the effective magnetic length, L, can be defined in
the similar manner with the conventional 2-dimensional dipole.

L=—1 fB;(z)dz:—l—jBl(z)dz
Bi(z=0) | _ Bio

) (H
where B,(z) is the intensity of the dipole field at z, and By = B(z=0) is the intensity of dipole field at the

center. As a natural extension of this effective magnetic length due to the replacement of the z coordinate
by the angle, @, the effective magnetic rotation angle, AQ, can be defined similarly as follows,

Ag=—1 Bi() do = -1 | Bi(p)d
0 B1((p=0)j 1(p) do ij 1(¢) do

00

03]

where B,() is the intensity of the dipole field at the angle, ¢(z), with the definition of @(z=0)=0, and B,
= B,(¢=0) = B;(z=0). Eq.(2) can be rewritten as a function of z as follows,

Ao=-1_1| Bio@)®dz =1 By( (z))S‘de=i‘£L
¢ BloJ 1((P())dz Bio ¢ dz & )
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In this definition, it means that the magnetic field where d¢/dz = 0 does not contribute to the effective
magnetic rotation angle.

3 RELATION BETWEEN THE ROTATION ANGLE AND THE CANCELLATION
OF THE TRANSVERSE INTEGRATED FIELD

In general, the integral of the field component, B, for the arbitrary direction with the angle, ¢, for the y
axis, can be expressed as follows,

J Bu9)dz = f B1(9(2)) cos (¢(2) - o) dz=0
, “

which may be rearranged to give

{ f Bi(¢(z)) cos ¢(z) dz} X cos Qo + {f Bi(@(2)) sin ¢(2) dz} Xsin Qo =0
. (5)
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Then, the following equations must be fulfilled to meet the condition for the arbitrary direction,

I f Bi(9(z)) cos ¢(z) dz = f By(z)dz=0

\j Bi(9(z)) sin ¢(z) dz = - J Bx(z)dz=0

. 6
Then, it can be realized that the cancellation of the integral of the field component, B, for the arbitrary
direction is equivalent to those for two transverse direction, x and y direction. In addition, ideally, B(z)

can be defined to be an odd function from the symmetry for the magnet center, z=0, with B,(z=0)=0.
Therefore, the integral of the x-directional field, B, is always zero for every helical magnet,

J Bx(z)dz=0
. N

As aresult, it is realized that the cancellation of the integral of the y-directional field, B, is essential for
that of the integral of the field component, B, for the arbitrary direction.

J By(z) dz = I Bi(q(2)) cos ¢(z) dz = f Bi(g(2)) cos ¢(z) % dp=0
¢
. @&

3.1 In the case of the perfect helical dipole without the end-field effect

For the case of the perfect helical dipole with the rotation angle of 27 (the integration -m to 7), with
B,(¢(2)) = B,y = constant, d¢/dz = k = constant, the Eq.(8) become simply the following form, showing
that the 27 rotation corresponds to the cancellation of the integral of the y-directional field, B,.

Bi(¢(z)) cos ¢(z) L-do = Biol cosg dp=0
do k A
o .

®
3.2 In the case of d/dz = k = constant with the end-field effect
With the following simple end field,
B1(z) = B1(z=0) = B1g, osm%-g
Bl(z)z-.BlQ Z-L__S_}, L-§.<Z<L_+§_
) 2 2 2 2 2 2 (10)

where B,(2) is assumed to decrease linearly to zero in the end region. The integral of the y-directional
field, B, can be written in the following form,

L,§ L.3 L.3
ERE 22 22
j By(z)dz = Bi(z) cos ¢(z) dz + Bi(z) cos @(z) dz
0 0 L.5
2 2 an
The contribution from the helical body portion can be calculated as follows,
L.§ R-€ n-€
22
B1(z) cos @(z) dz = Bi(@(2)) cos @(z) L-dg = Bio cos pdo = Bio ging
do k k
0 0 0 R (12)
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where @((L - 8)/2) =k (L - 3)/2 = = - € is defined. From the end portion,

(X301

L. ]
2
f B1(z)cos<p(z)dz=—%f (z-8)coskz+m-¢€)dz
s 0
2

[
.

Bio | _cos (€-kB) . cos e +kd sin €
8 2 2

k k (13)
If k& is equal with 2e (k3=2¢), the cancellation can be obtained,
L.8 L.&
2 2 2 2
Bi(z) cos @(z) dz = - Bio gjp g=- f Bi1(2) cos @(z) dz
L.§ k (i
272 (14)
The effective rotation angle of this case can be calculated from Eq.(3),
L,.3 L,8
2 2 2 2
Ao=2 Bn®a=2@m-e)+-2-| B
Bio |, & Bio JL s &
2 2
5
=2(n-e)+—2-f -El-‘l(z-a)kdz=2(n-e)+k8=2n
10 J, (15)

In this case, it is verified that the cancellation of integrated field is equivalent to the effective rotation
angle of 2r, which is equal to the rotation angle between the magnetic length from z=-L/2 to L/2.

3.3 In the case of d@/dz = ke #k at the end-field region

In the following case that the rate of the phase rotation in the end region, k., is different from that in the
helical body part,

B1(z) = By(2=0) = Byo, 90 _y, 0<z<L.8
& 2 2
B](Z):-m{z-lﬁ--—&}, d_(‘P=ke, L-éSZSL-}-Q
3 2 2 & 2 2 2 2 , (16)
the contribution from the end portion can be calculated as follows,
L,8 8
2 2
f B1(z)cos<p(z)dz=-§-‘ﬁf (z-8)cos (kez+T-€)dz
L.§ 5 0
272
=_§_1Q{_cos (e-ked) , cos & +ked sins}
8 ke’ ke (17

Then, the angle € can be obtained as a function of k, and & from the following equation required for the
cancellation of the integrated B, field.

sins__]_{_cos (e-ked) , cos € + ked sin e}=0

kK k2 ke’ (18)

In addition, the rotation angle of this case become,
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Therefore, for the cancellation of integrated transverse field, the effective rotation angle should be reduced
from 2x by the angle 2¢ - k, 3.
Especially, in the case of k, = 0, the requirement for the integrated B, becomes,

L,35

2+ 22 2
r ’ By(z)dz = I Bi(z) cos ¢(z) dz + f Bi(2) cos ©(z) dz
0 0

L.8

Nl["
"
oo

5
=B10 gin ¢ + cos (n-e)f -Bﬂ(z-ﬁ)dz=§19-sine-mcose=0
, O k 2

K 20)
Then, the following relation is obtained from the above equation,
g=tan" (k)
2. @D
The effective rotation angle, A@, also becomes,
Ap=2m-2e=2m-2tan’ (kD)
2. (22)
3.4 In the case with the realistic (or measured) end-field region
In the following case with the realistic end region,
— Bi(7=0) = do _
Bi(z) = Bi(z=0) =B, E—k’ 0<z<z
Bi(z) = Bio b(z-z), Q= Q(z-z), Ze<z<7Zf
s 23)

where the function b(z-z,) describes the z dependence of the normalized dipole field, and function @(z-z,)
also describes the z dependence of the phase of the dipole field. The following equation is required to meet
the condition of the zero integrated transverse field,

2f Ze zf
j By(2)dz = I B1(z) cos ¢(z) dz + f Bi(z)cos p(z)dz =0
0 4] Ze

, (24)
which may rearrange to give,
Ze 2f-2¢
BloJ cos (kz) dz+f Bi(z - ze) cos [(p(z- ze)+kze]dz=0
0 0 25)
Then, the half length of the helical body portion, z, is required to meet the following equation,
2f - 2p
f b(z-ze)cos[(p(z-ze)+kze]dz=-ﬁ-(ll:—ze)
0 (26)

The above equation can be solved numerically.
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4 MEASURED RESULTS OF THE BNL PROTOTYPE HELICAL MAGNET

The z dependence of the dipole field, B(z), the phase of dipole field, ¢(z), and the phase changing rate,
dg(z)/dz, which was obtained from the magnetic measurement with Hall probe are shown in Figs.1 - 3 for
I=105 A and in Figs.4 - 6 for I=220 A, respectively.[1,2,3] In these figures, the central position of the
magnet, z = 0, is defined as the middle point for the magnetic length. The z dependence of the dipole
field, B (z), and the phase of dipole field, ¢(z), are roughly approximated with § = 0.2 m, k = 150 deg/m,
k.= 75 deg/m, L = 1.195 m (for 105 A) or 1.191 m (for 220 A) on Eq.(16). This linearly approximated
curves for both of the dipole field, B,(z), and the dipole phase, ¢(z), are shown in Figs.1 - 2 for I=105 A
and in Figs.4 - 5 for I=220 A. The z dependence of the normalized dipole field, B,(z)/B,,, and the dipole
phase, @(z), for both end regions are also shown in Figs.7 - 8 for I=105 A and in Figs.9 - 10 for I=220 A,
respectively with z, = 0.4 m. The difference of the magnetic structures in both ends seems to be little.
The rotation angles for the body portion and end potions are listed in Table 1. In Table 1, A [left], Ap
[body], and A@ [right] mean the rotation angles for the left end potion, the body portion, and the right end
portion.

In addition, it seems that the thermal contraction of helical dipole can be detected through the estimation
of the effective magnetic length, L, (=1.200 m at room temperature) and the changing rate of the phase of
dipole field between z = - 0.4 m and z = 0.4 m, k = d¢/dz (=150 deg/m at room temperature) as shown in
Table 1. The estimated results is almost consistent to the expected thermal contraction of Al coil bobbin
of 0.415 % from the room temperature to 4.2 K.

Table 1 Comparison between the prototype and the simulated full-size helical magnet

L k A [total] Ag[left] A¢[body] Ao [right]
(m) (deg/m) (de) (deg) (deg) (deg)
Prototype 1.195 150.7 166.6 22.7 120.3 23.6
(105 A)
Prototype. 1.191 150.4 166.8 23.0 120.4 23.4
(220 A)
Full-size 2.401 150.0 345.2 15.0* 315.2* 15.0%
(Linear Model) .
Full-size 2.401 150.0 348.3 23.4 301.5 234
(Symmetric)
Full-size 2.391 150.6 348.0 234 301.2 234
(Symmetric)
Full-size 2.390 150.6 347.6 23.0 301.2 23.4

(Non-symmetric)

5 CALCULATION FOR A HELICAL MAGNET WITH FULL LENGTH

5.1 Linear Aproximation

First of all, for the nominal rate of the phase rotation in the helical body part, k = 150 (deg/m), and three
values, 0.1 m, 0.2 m, and 0.3 m of the length of end regions, 8, the effective rotation angle, A@, can be
calculated as a function of the rate of the phase rotation on the end region, k., from Egs.(18), (19), (21),
and (22), as shown in Fig.13. Especially, the effective rotation angle, A, and the effective magnetic
length, L = Ag/k + & (1 - kJk), solved for the above-mentioned values, k = 2n/2.4 (rad/m) = 150 (deg/m),
k. = k/2 = 75 (deg/m), and § = 0.2 m, are listed in Table 1. In this case, A@ [left], and A¢ [right]
correspond to the length of the end region, 8 = 0.2 m, differently from the other case listed in Table 1.

5.2 In the Case with the End of Half Length Prototype Magnet

With the assumption of the symmetric magnetic structure that both ends are identical, and are the same
with the end of the prototype helical magnet from z=+ 0.4 mto z=+ 0.8 m, shown in Figs.9 - 10 for
1=220 A, and k = 150 (deg/m) for the helical body part, the half body length, z, can be calculated from
Eq.(26), obtaining z, = 1.005 m. This means that the helical body portion of the prototype magnet from
z=-0.4m to z = + 0.4 m, should be replaced by that with the length, 1.005 X 2 = 2.01 m for the full-
size magnet, resulting on the extension of the helical body portion of (1.005 - 0.4) X 2 =121 m. In
addition , the following results are listed in Table 1,

the effective rotation angle : AQ = 23.4 X 2 +150.0 X 2 x 1.005 = 348.3 (deg) , and,
the effective magnetic length : L = 2.401 (m).

)
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This result seems to be almost equivalent to that calculated by TOSCA.[4] Similarly, in the case of k =
2n/{2.4 x (1 - 0.00415)} (rad/m) = 150.6 (deg/m), the half body length, z, can be also calculated,
obtaining z, = 1.000, and the following values, as listed in Table 1.

the effective rotation angle : A@ =23.4 X 2 + 150.6 X 2 X 1.000 = 348.0 (deg) ,.and,
the effective magnetic length : L = 2.391 (m).

Furthermore, with the assumption of the non-symmetric magnetic structure that each end is different, and
the same with the eachend fromz=-0.8mtoz=-0.4 mor from z=+ 0.4 m to z = + 0.8 m, shown in
Figs.9 - 10 for I =220 A, and for the same helical body part with k = 150.6 (deg/m), the non-symmetric
full-size helical dipole can be constructed, as lastly listed in Table 1. For B,y = 4.0 T, the field
distribution of this non-symmetric full-size helical dipole are shown in Figs.14 - 20. In these figures,
black dots are shown at every 5.0 mm along the beam axis for the indication of the relation between the
same z positions in each figure. Especially, the distribution of the field component, B, for the direction
with the angle, @, = + 30 degree for the y axis is shown in Fig.19. The comparison for the integral of
the magnetic field between the symmetric and non-symmetric ends of the last two cases listed in Table 1,
is shown in Table 2.[4,5] It can be checked that the integral of B, is the same with that calculated from
the integral of B,, and B,, using Eqs(4), (5), (6).

Table 2 The integrated vales of the magnetic field along the beam axis

Integral of B, (Tm) Integral of B, (Tm) Integral of B, (Tm)

[@g = 30 deg]
Symmetric 0 -22x10° -1.9x 10°
Non-symmetric +1.5x%x 107 +5.8 x 10 -2.5% 10"

6 CONCLUSION

The rotation angle of helical dipoles is defined, similarly with the magnetic length. Then, it seems to be
reasonable that the rotation angle of helical dipoles is defined as that between the effective magnetic
length. The relation between the rotation angle and the cancellation of the transverse integrated field
depends on the magnetic structure in the end of helical dipoles. As a result, it is shown that the rotation
angle of helical dipoles, which meets the condition of the cancellation of the transverse integrated field,
deviates from 27 for the case that the changing rate of the rotation angle is not constant. There are some
difficulties that the rotation of the dipole field is specified only by the rotation of the coil in the helical
body region, whereas the field rotation in the end region is not specified only by the rotation of the coil,
but also depends on the structure of the end structure of iron yoke.

As a result, it is shown that the length and the rotation angle of the helical dipoles can be optimized for
the known ends. In addition, it is shown that the field integral along the beam axis for helical dipoles
with the non-symmetric ends become larger than that for the symmetric ends.
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