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Abstract

m A method of overcoming intrinsic spin resonances by transporting po-
larized beam into a resonance island created by rf dipoles for adiabatic
spin flip is discussed. Specific parameters needed in achieving polarized
beam acceleration in the AGS are estimated. Numerical simulations with
the AGS parameters are performed to verify the theoretical estimation.
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1 Introduction

Spin motion in synchrotrons obeys the Thomas-BMT equation [1]. For a planar
synchrotron with a vertical guide field, the polarization vector precesses Gy turns
per orbital revolution, where G = 1.792847386 is the anomalous g-factor for
protons, 7 is the Lorentz factor. Thus Gy is called the spin tune. In high
energy accelerators, beam stability requires strong focusing quadrupoles. The
non-vertical magnetic fields can perturb the spin away from the vertical direction.
In particular, a spin depolarization resonance occurs when the spin tune is equal
to the tune of spin perturbing fields.

During acceleration toward high energy, polarized beams encounter many
depolarization resonances [2, 3]. Two major types of spin depolarization reso-
nance exist in synchrotrons, i.e., the imperfection and the intrinsic resonances.
The imperfection spin resonance is created by the vertical closed orbit deviation
from the center of quadrupoles, and the intrinsic spin resonance is produced by
the vertical betatron oscillations. The resonance condition is given by

Gy=1T" for imperfection spin resonance, (1)
7=\ kP +mv, for intrinsic spin resonance,

where k,m and n are integers, P is the number of superperiods, and v, is the
vertical betatron tune. For polarized protons in the AGS, we have P = 12, and
v, =~ 8.8. Along with these two major spin resonances, depolarization can also
occur at the linear coupling resonance line (see e.g. [4]), and at the synchrotron
sidebands of primary spin resonances [5}.

Using the Thomas-BMT equation [1], the spin resonance strength is given
by the Fourier amplitude of the spin perturbing fields in synchrotrons [2, 3], i.e.

AB: | AByj| ks
1 _u 1
By + (1 + G) By e ’ds, (2)

%zifk+m)

where 8 is the orbital bending angle, s is the distance along the reference orbit,
AB, is the radial perturbing field, AB, is the longitudinal perturbing field, and
Bp is the magnetic rigidity of the beam.

A partial Siberian snake has been successfully employed to overcome imper-
fection resonances at the AGS, and the IUCF Cooler Ring [4]. On the other hand,
overcoming intrinsic resonances, which are traditionally corrected by the tune
jump method [6], remains to be a difficult task. The difficulty in the tune jump
method is that it will also cause emittance growth resulting from non-adiabatic
optical mismatch and particularly the non-adiabatic betatron oscillations induced
by an off-centered closed orbit in the tune jump ferrite quadrupoles [7]. For attain-
ing polarized proton collisions in the relativistic heavy ion collider (RHIC), the
polarized beam in the AGS must be accelerated up to Gy = 47.5 passing through
many intrinsic resonances at Gy = v,,24 — v,;,12 + v,,36 — v,,24 + v;,48 — v,



and 36 4+ v,. Thus finding a scheme to overcome intrinsic spin resonances without
causing emittance dilution is an important topic in accelerator physics.

This paper studies the feasibility of polarized proton acceleration through
intrinsic spin resonances by using the betatron resonance islands generated by a
radio frequency (zf) dipole field. Section II provides theoretical framework for
the method. Numerical simulations and the AGS modeling are given in Section
I1I, and the conclusion is given in Section IV.

2 The theoretical framework

When the spin tune of a polarized vector is uniformly accelerated through an
isolated resonance with a resonance strength ¢, the ratio of the final polarization
P; to the initial polarization P; is given by the Froissart-Stora formula [8]

P xlef?

5 =2 (3)

= 4E 2a —17

P,
where € is the resonance strength, and

L _ 4Gy —kPFy,)
N d6

is the acceleration rate. Based on the Froissart-Stora formula, one might think
that the polarization of the beam could be maintained by the adiabatic spin-flip
through a strong spin resonance.

However, the intrinsic spin resonance strength is proportional to the betatron
amplitude or the square root of the vertical betatron action for an intrinsic res-
onance. Since a beam of polarized protons is usually composed of particles with
different betatron actions, the final polarization is obtained through the ensemble
average of the Froissart-Stora formula over all particles with different betatron
amplitudes. The final polarization after passing through an intrinsic resonance
for a beam with Gaussian distribution becomes

(Bi): 1-Ws
P; 1+ Wy’

(4)

where Wy = 7|€o|?/c, and € is the spin resonance strength for the particle with
the rms betatron action I, of the beam. Here the rms action of the beam is
defined by the rms beam size with

2
o,
In:ns = 2ﬁz ) (5)

where o, is the vertical rms beam size, and 3, is the vertical betatron amplitude.
This means that the adiabatic spin-flip by a slow acceleration through an intrin-
sic resonance cannot efficiently be used in polarized proton acceleration. Since
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particles at the center of the beam bunch with small actions do not flip their spin,
partial beam depolarization is usually inevitable.

To circumvent this difficulty, we can give the beam a coherent betatron exci-
tation so that all particles have large betatron actions and the resulting ensemble
average of the final polarization is essentially the same as that obtained from the
Froissart-Stora formula [8]. However, betatron oscillations of different particles
with different betatron tunes can decohere rapidly. This will result in emittance
growth and performance degradation.

A coherent betatron oscillation without emittance dilution could be main-
tained by creating a resonance island in the betatron phase space, generating a
potential well to maintain the bunch transverse phase space profile. This idea can
be achieved by a modulation rf dipole, which can create 1:1 parametric resonance
islands [9, 10] in the vertical phase space. This section discusses a method in
producing 1:1 parametric resonance islands.

2.1 Effect of rf dipole on betatron motion

The vertical betatron equation of motion is given by

AB;

where z is the vertical betatron coordinate, the prime corresponds to the deriva-
tive with respect to the longitudinal coordinate s, K,(s) is the focusing function,
and

2"+ K. (3)z = -

AB, = AB(s) cos vy,8

is the rf horizontal dipole field with vy, as the modulation tune given by vy =
fu/ fo. Here fi is the rf frequency of the rf dipole field, and f; is the revolution
frequency. The corresponding Hamiltonian is given by

1 2 1 2 AB (S)
= "Kz B mY -
H 52 + 5 K2z + p Z COS U0 (7)
Using the generating function Fi,
P B
F = — % _ =
1 252( an ¢z 2 )7 (8)

where 3.(s) is the betatron amplitude function, ¢.(s) is the new conjugate phase
coordinate, the canonical transformation is given by

z =+/28,1,cos ¢, p,=cz+P.2 =—1/20.1,sin¢,.

Here I, and ¢, are conjugate action-angle phase space coordinates. The new
Hamiltonian becomes

I AB L
H(I,, ¢,) = _ﬁ— + B—p 203,12 cos ¢, cos vy b, (9)



where s is still serving as the time variable.
Using the generating function

s ds

o B’

where J, and ¥, = ¢, — u.(s) + v.0 are conjugate phase space coordinates, and
using the orbit angle § = s/R as the time variable, the new Hamiltonian becomes

Fy= (s — ptz + v:0)Ts,  pa(s) =

RAB(s)
H(J,, %) = voJ; + TVZ@ZL cos(v; + pz — v,8) cos vmb, (10)
where R is the mean radius of the accelerator.

Since AB(s) and p.(s) — v,0 are periodic function of 4, the Hamiltonian of
Eq. (10) can be expanded in Fourier series:

1 } .
_ bl i(1hpz—nb) —i(1pz+nb)
H(Jzy%:) = vade + 5 En:\/z.fz [Cate + Cn_e | cos v, (11)

where we have

— 2R AB(S) z(uz—uze) nd
Coy = 27r f 2228 /8. ds, (12)
n— —_ —1 z2—Vz 271 1
C 5 / \/B: e™ds. (13)
In particular, a localized rf dipole will produce all integer harmonics in the Fourier

expansion.

The resonance condition is given by vy, = n & v,. For example, v, & 8.8,
the resonance condition can be fulfilled by v, ~ 0.2 with n = 9. At a resonance
condition vy, = n & v,, we need to retain only the resonance term

1
H(J,¢,) = v,J, + —2—\/2.]3!0&;] cos(th, — nb + vmb + x), (14)

where x is the phase of the resonance strength, and

Coal = ABAL \/b— (15)

with the integrated rf dipole field strength ABAL = [ AB(s)ds.

We now transform the phase space into the resonance rotating frame by
using the generating function

Fo = (¢, —nb+ vb + x)J, (16)

and the new Hamiltonian becomes

H(, 7) = 8] + 3|Cual VT c05 9. (17)



where § = v, — (m — vy,) is the resonance proximity parameter, J = J, and
¥ =1, —nb + v,0 + x. Now, we add a nonlinear betatron detuning term to the
Hamiltonian H(v, J) (see Appendix A), i.e.,

1 1 —
H(’lﬁ, J) = 5J+ Eaqu + ilCcﬁ'l 2JCOS’l/}, (18)
where the detuning parameter a,, are generated by using octupole magnets or

the second order effect of sextupole magnets.
The fixed points of the resonance Hamiltonian is given by

- 0H |
Equation (19) gives 9,, = 0 or 7 and
§+ az.J + %ch(zj)-% cos ¥, = 0. (20)

Defining the parameter w = v/2J cos,,, where 9,, = 0 or 7, the equation for
the fixed point becomes

26 C.

w + f =

azz aZZ

w® + 0. (21)

Letting the resonance strength parameter a and the resonance proximity b be

. 26
a= 2C ﬂ, b= ,
azz azz
Eq. (20) is simplified to
3 1
w ——bw+§a=0, (22)

which has three solutions for b > by = 3(%)§ given by

2 1 ¢
= ——_b3 2 23
wh 3 COS3, ( )
2 1.
wy = -—3b5s1n(g—-—§-), (24)
2 1. T
w3 = %bz Sln(-é‘+’§-), (25)

with ¢ = arctan /(b/b)3 — 1. Here wy and w; are stable fixed points (SFP) and
wj is the unstable fixed point (UFP).



Using the normalized coordinates with

3
h; = \/%’wi

for 7 = 1,2,3, the intercepts of the separatrix with the betatron coordinate are
given by

2
ha = —hs — —= (26)
3

2
hy = —h3z + ——. 27
b 3 + \/]’L_ ( )
Figure 1 shows the fixed points of resonance islands and the intercepts of the
separatrix with a phase space coordinate as a function of the resonance proximity

parameter b/by.

2.2 Requirements for the bunched beam manipulation

Assuming a synchrotron with dynamical aperture Dg, the stability condition of
particle motion is given by

ﬁzwa S DO . (28)

To fit the beam bunch with a 95% normalized emittance ¢, into the resonance
island, the additional condition is given by

\/,Ez-[wa - wbl 2 V 6%53) (29)

where the factor of 6 depicts the fact that the island is large enough to encompass
60,. In order to put the beam bunch into the center of the resonance island, the
angular kick 8; needed to transport the beam bunch from the SFP w, to the SFP

wy is given by
,szok =4/ ﬂzklwl - ’Ulzl, (30)

or

1
6 = Eazz,@zwi = Otzz]sfp, (31)
where B,; is the betatron amplitude function at the kicker location. Alternately,
the beam bunch can be transported into the outer island by adiabatically ramping
the betatron tune. Equation (31) provides the tune ramp needed to generate
coherent betatron oscillation with a coherent betatron action Is.

Following an angular kick 6, the Gaussian distribution function becomes

1 2? + (p: + ,62 0r)?
ple,p:) = oy exp{ Bt Bl (32)
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where the rms beam size is ¢, = v/B:Erms, and
28,J cosy, p, = —4/28,Jsin.

When the kicked beam is accelerated through an intrinsic spin resonance, the
final polarization, given by the ensemble average of the Froissart-Stora formula
over the beam distribution, becomes

Py 2 ((Bopfpl )zl

<TD¢'—> = mgo—lz'exp{ —W—} -1 (33)

where ¢, is the resonance strength of rms particle with action I, In order to
achieve a 99% spin flip, the kicker angle requirement is

,szek > 3 3(1 + | |2)1/20'z~ (34)

Clearly, the method is not applicable to weak spin resonances where 7|eo)?/a < 1.

3 Application to the AGS Polarized Beam Ac-
celeration

The AGS lattice consists of combined function magnets with P = 12 superpe-
riods, v, = 8.8, and B.maz = 22 m. The polarized proton acceleration rate is
normally & = 4.5 x 107%. The normalized emittance of polarized proton beam is
about 10 ~ 207 mm-mrad. Table 1 lists the spin resonance strength € for the
rms particle with normalized 2.5 m mm-mrad emittance [6]. This corresponds
to a beam of 15 7 mm-mrad 95% emittance. The parameter Wy = 7|€)?/a is
listed in the third column. The 4th column is the beam size with 2.5 7 mm-mrad
normalized rms emittance. The required 99% spin flip kick amplitude B,x0k is
shown in the fifth column, and the required minimum half-aperture is listed in
the sixth column, where the aperture is given by Domin = Bk + 30.. Clearly,
the present method can only be used to overcome strong spin resonances at 0+,
12+ v,, 36 — v, and 36 + v,. Fortunately, weak spin resonances at 24 —v,, 24 + v,
and 48 — v, do not require correction for a properly tuned lattice with a small
emittance beam.

The proximity parameter is chosen such that the resulting outer SFP is large
enough to reach a 99% spin flip. The rf modulation field strength is chosen such
that the island size is large enough to encompass the entire bunch. The 7th
column of Table 1 lists the required integrated field strength of the rf dipole
in Gauss-meters, which is obtained by solving Eq. (29) with a 95% normalized
emittance at €, = 157 mm-mrad and a typical detuning parameter a,, = 1000
(r-m)~!. Although a larger ¢,, parameter is preferable for the stability of the
beam near the 1:1 parametric resonance, we will discuss the effect of rf dipole in
the small detuning limit in next section. In the following, we discuss other issues
associated with polarized proton acceleration using the rf dipole scheme.
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Table 1: Intrinsic resonance strengths of the AGS

Gy €(2.57) | 7|eo|?/a | o BekO% | Domin | (BL):t
(mm) | (mm) | (mm) | (Gm)

0+v, |0.0075 |3.9 3.3 124 125 8
24 — v, | 0.0003 | 0.006 2.5 107 - -
124 v, | 0.0029 | 0.6 2.2 11.8 |18 5
36 — v, { 0.0062 | 2.7 1.9 7.3 14 5

24 + v, | 0.0005 | 0.02 1.7 40 -
48 — v, | 0.00077 | 0.04 1.6 27 -
36 +v, | 00134 | 125 1.5 5.1 10

S

3.1 Numerical simulations

There are three methods to transport the beam bunch into the 1:1 parametric
outer resonance island. The first method uses a single turn dipole kicker to
transport the beam from the inner fixed point w, into the outer fixed point un
[9]. The second method employs slow quadrupoles to change the vertical betatron
tune in order to transport the beam bunch along the w; SFP from the b/b, < 1
region to the b/by > 1 region [10]. The third method adiabatically ramps the
rf dipole field strength at 5/b, < 1 region in order to increase the amplitude of
coherent betatron oscillations.

3.1.1 Coherent betatron oscillation with a dipole kick

Using a dipole kick, the beam bunch is transported from the inner atiractor w;
to the outer attractor w; by a pulsed dipole. The bottom plot of Fig. 2 shows
the phase space ellipse of a beam bunch with a 95% normalized emittance of
20 7 mm-mrad being transported into the outer island. The top plot shows the
Poincaré surface of section at the end of 500 orbital revolutions. Note here that
the mismatch of the beam ellipse can result in a substantial emittance dilution.
By observing the mismatch of the equipotential contour of the inner and outer
SFPs, we find that emittance dilution is inevitable for the kick method.

3.1.2 Coherent betatron oscillation with slow tune ramp

Using slow quadrupole magnets to vary the tune, the center of the bunch can
be adiabatically transported along the SFP w; (see the bottom plot of Fig. 1
of Ref. [10]). An example of a tune ramp is shown in Fig. 3. The top left plot
shows an initial distribution along with its potential contour, where the rf dipole
is on without any tune ramp. The top right plot shows the beam profile after
the tune is changed by 0.02 in 600 turns. The tune is held at this value to cross



the intrinsic spin resonance for another 600 turns. At the end of 1200 turns, the
Poincaré surface of section is shown in the bottom left plot. After crossing the
spin resonance, the tune is ramped back to its original value. The final Poincaré
surface of section for the beam bunch is shown in the bottom right plot. Note here
that the adiabatic process renders a minimum emittance growth for the bunch
beam manipulation. Qur numerical simulations show that the minimum number
of turns for attaining adiabatic transport of the beam bunch is about 500 turns.

3.1.3 Coherent Betatron oscillations in the zero detuning limit

When the nonlinear detuning is reduced, the amplitude of the 1:1 parametric
resonance becomes much more sensitive to the proximity parameter §. A small
change of the § parameter, can result in a large change in the parameter b/bs in
Fig. 1. Figure 5 shows the fixed points in mm at the location of 8, = 22 m for
the parameter a,, = 0, 100, and 500 m™! respectively. Thus the outer SFP of the
1:1 parametric resonance may lie outside the dynamical aperture (about 38 mm)
in the small detuning parameter case. The procedure to induce an enhanced
betatron oscillation is to operate the rf dipole with a proximity parameter of
about 0.01 in the parametric region b/by < 1. Then the rf dipole modulation
amplitude is adiabatically increased so that the beam follows the SFP of the 1:1
resonarnce.

The integrated rf dipole field strength in the zero detuning limit is related
to the coherent betatron amplitude z.., by

/ABdst = 4n(Bp)bzcon/ B, (35)

where 2o, is the fixed point of the Hamiltonian in Eq. (17). The fifth column
in Table 2 shows the integrated rf dipole strength needed to achieve the required
amplitude of the coherent motion ze.n = 3.6k of Table 1. Numerical simulations
showed that the adiabaticity can be maintained easily when the modulation am-
plitude is varied. The resulting emittance growth factor is listed in the sixth
column of Table. 2.

3.2 Physics of coherent rf spin resonance

Since the tune of the coherent vertical betatron oscillations induced by the rf
dipoles at a modulation tune vy in AGS is 9 — vy, coherent spin resonances are
located at Gy = kP £ (9 — vm). The coherent spin resonance is identical to
the intrinsic spin resonance resulting from spin kicks due to quadrupoles in the
synchrotron. At the same time, the rf dipole also generates rf spin resonance
located at

Krf =n* Vm- (36)
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Table 2: Rf dipole strength is listed together with the parameters of the strong
intrinsic resonances in the AGS. The last column shows the emittance growth
obtained in numerical simulations. The amplitude of the rf dipole was ramped
up during 1000 turns left at the maximum value for 2000 turns and then ramped
down over again 1000 turns. A betatron tune spread of +0.002 due to some
residual non-zero chromaticity and a residual detuning parameter of 40 m™! was
also included.

Gy Bp | €(2.57) | 2zecon | JABds | emittance
(Tm) [mm] [Gm] | growth ratio
O+v, | 151 | 0.0075 | 124 11. 1.07
124+, | 36.2| 0.0029 | 11.8 24. 1.07
36 —v, | 474 | 0.0062 7.3 20. 1.00
36+v, | 782 0.0134 5.1 23. 1.01

The induced rf resonance strength is given by

1+ Gy (BL)s
€f = .
27 Bp

(37)

Since the rf dipole field needed for polarized beam operation is very small (see
Tables 1 and 2), the rf induced spin resonance has little effects on spin motion.

An alternative scheme of spin flip is to generate large rf spin resonance so
that the spin motion near the intrinsic spin resonance will adiabatically follow
the spin closed orbit of the rf spin resonance. If we choose the rf spin resonance
location K near the intrinsic spin resonance, the spin motion will be dominated
by the rf resonance. To reach an rf spin resonance strength of & = 0.025, the rf
dipole integrated field strength is about 2500 Gauss-meters. Such a high field rf
dipole is hard to achieve.

The basic idea of attaining a large coherent intrinsic spin resonance is to
excite coherent betatron oscillations of the beam. When the rf dipole field is
adiabatically turned on, the synchronous particle with a zero betatron action is
adiabatically transported to the SFP of the 1:1 parametric resonance, which has
a large coherent betatron action. Particles with nonzero actions orbit around the
SFP at the island tunes given by

Visland ™ aa:z']:z: + azz']z +- ] (38)

where J; and J, are the betatron actions of a particle relative to the center of
the bunch. Thus particles with nonzero initial betatron actions will performs
coherent betatron oscillations with amplitude and phase modulations around the
SFP of the 1:1 parametric resonance. The amplitude modulation is averaged out
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to give a coherent spin resonance strength, while the phase modulation can create
many island sidebands located at

K = kP + (9 - Vm) + eVisland;

where £ = integer. Since the island tune is small, overlapping sidebands can be
summed to obtain a single coherent spin resonance.

A beam bunch is also composed of off-momentum particles. If the chro-
maticity is not zero, the betatron tune of the particle with an off momentum
value Ap/po is given by

Vzoff = V, + CZ'A;p
Po
When the rf dipole is adiabatically excited at the modulation tune vy, all particles
with an off momentum Ap/po will execute coherent betatron oscillations around
a SFP that differs from the SFP of the synchronous particle. The polarization
of the beam after passing through the intrinsic spin resonance is the ensemble
average of the beam particles.

The spin tune modulation of an off momentum particle produces synchrotron
sidebands. If all synchrotron sidebands overlap with the primary spin resonance,
these sidebands can be summed to give rise to the primary spin resonance with

a phase shift [5].

3.3 Detuning Parameter in the AGS

The bunched beam manipulation requires detuning parameter «,, to ensure that
SFPs of the 1:1 parametric resonance remain inside the dynamical aperture. The
detuning parameter arises mainly from sextupole and octupole fields. The bot-
tom plot of Fig. 4 shows the measured chromaticities as a function of the beam
momentum in (GeV/c) [11]. Solid lines are chromaticities obtained from a fit
with the integrated sextupole field strength

Sy = —0.0003875 + 0.03228/p — (0.00008p + 0.000001p* + 0.0000009p%) (m™?),
S, = —0.01 (m™),

for short AGS bending magnets (2.0066 m). For long magnets (2.3876 m) in
the AGS, the integrated sextupole strength of the S, term is assumed to be
proportional to their length. Here p is the beam momentum in (GeV/c), Sy is
the integrated sextupole field in each dipole distributed in the whole dipole, and
S. is the integrated sextupole field distributed only at the end of each dipole. The
first term in S may be considered as the systematic error term. The eddy current
contribution, which is inversely proportional to the beam momentum, depends
on the B. In this specific experiment [11], we have B = 2 T/s. The saturation
term is nonlinear with respect to the momentum p. The end sextupole in the S,
term is assumed to be momentum independent.
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It is worth pointing out that the above sextupole model may not be fully
justified by fitting only the data from the chromaticity measurements. Detailed
beam measurements are needed to obtain a better model.

There are two family of chromatic sextupoles in the AGS. The vertical chro-
matic sextupoles are located at all Tth straight sections. The horizontal chromatic
sextupoles are located at the 13th straight sections except the C, F, I, and L su-
perperiods. Using these two families of sextupoles, the chromaticities can be
adjusted to zero easily. The resulting detuning parameters, qzz, @zz, and o, are
shown on the top plot of Fig. 4. Since &, is less than zero for all momentum, the
detuning parameters seen by the beam can be reinforced by choosing octupoles
with negative detuning octupole field gradients. To minimize vertical tune spread
of the beam, it. is preferable to have a machine with zero chromaticity and zero

Cgs-

4 Conclusion

The method of overcoming intrinsic spin resonances by using the 1:1 parametric
resonance island created by rf dipoles is studied. Analytic formula and numerical
simulations are used to evaluate the feasibility and difficulties of this method. We
find that the beam should be adiabatically transferred to the outer parametric
resonance island. The chromaticity should be corrected to minimize the betatron
tune spread vs the particle momentum. The required betatron amplitude detun-
ing parameter can be generated by octupoles. Using the realistic AGS lattice,
the method can indeed be used to provide polarized beam acceleration through
intrinsic resonances. Experimental tests should be carried out in order to study
the feasibility of the method present in this study.
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Appendix

A Detuning coefficients

The particle Hamiltonian in the presence of octupole magnets is given by
1 B"(s)
24 Bp

where K, and K, are focusing functions, B"(s) = B AL|;8(s—si) is the strength

function of the i-th octupole magnet. Here B’AL|; is the corresponding inte-
grated octupole strength. Using the Floquet transformation with

= \/28cJz cos(dbz), 2z = 1/2B:J; cos(¥.), (40)

and using the angle § = s/R as the time variable, the nonlinear detuning to the

H = 5(7 4 27) + 5(Ku(s)a? + Kul0)2?) + 375 2(a* — 60727 + 2), (39)

Hamiltonian is given by

1

H=vJ,+v,J,+ Easz + az.JzJ; + —;-azz.]f 4., (41)
where
III
A
Gz = 167er Z( L) (42)
Qpy = — /32133 Z(BI”AL)i gy = Z( ",AL) (4_3)
8rBp < ’ 167er

Besides the nonlinear detuning, octupoles generate also half-integer and 4th
order nonlinear resonances. The AGS lattice is made of 12 superperiods with 5
nearly identical FODO cells per superperiod. It has a weak 60 FODO periods.
Since the betatron tunes are about 8.8, the "best” octupole arrangement is a
configuration with 4, 6 or 12 octupoles located symmetrically with respect to the
AGS machine. Let N be the number of octupoles, i.e. N = 4,6 or 12. The
driving terms for the 2v; — 2v; = 0 and 4v, = 36 resonances are respectively

given by
1
-2:0 — — N " Li:z::z vz z — z /)y
Hi, 20 {167er (B"AL)if:fe} el cos(24: — 2¢2) (44)
1
U N " A2 12 _ .
H0,4,36 {967er ('B AL)ile}Jz COS(4¢Z 369) (45)

The effect of these resonances can be minimized by moving the betatron tunes
away from these resonance lines.
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Figure 1: The fixed points, in the normalized coordinate, of the 1:1 paramet-
ric resonance Hamiltonian is plotted as a function of the modulation frequency

parameter z = b/b.
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Figure 2: The bottom plot shows the beam bunch with a 95% normalized emit-
tance of 20 # mm-mrad being kicked into the outer island of the 1:1 paramet-
ric resonance. The top plot shows the evolution of the ellipse after 500 orbital
revolutions. The mismatch of the Hamiltonian contour can cause a substantial

emittance dilution.
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Figure 3: The top-left plot shows the beam distribution in the Hamiltonian con-
tour. The top-right plot shows the beam profile and the Hamiltonian contour
after the betatron tune is adiabatically ramped by 0.02 in 600 revolutions. The
bottom-left plot shows the beam profile in the Poincaré surface of section when
the betatron tune is stationed for the spin resonance crossing. The bottom-right
plot shows the beam profile after the betatron tune is adiabatically restored to its
original value. Note that the emittance is preserved in these beam manipulations.
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Figure 4: The bottom plot shows the measured chromaticities of the AGS [11]
as a function of the beam momentum. This set of data is used to deduce the
intrinsic sextupole field in A the AGS Ring. The top plot shows the nonlinear
detuning parameters when the chromaticity of the AGS is corrected to zero with
two families of chromatic sextupoles.
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Figure 5: The distance (in mm) of the fix points from the reference orbit is shown
as a function of the proximity parameter §. The three set of curves show the fix
point locations and nonlinear detuning curve with detuning parameter of 0, 100,
and 500 m~! from left to right, respectively.
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