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“ OPTIMIZATION OF A NOMINAL 4-HELIX SNAKE AT VARIOUS BEAM ENERGIES *

LUISA D. BOZANO t
AGS Department, Brookhaven National Laboratory
Upton, NY 11978-5000, USA
E-mail: bozano@omninet.it

1. Introduction

Siberian snakes designed for RHIC are built with four superconducting helical
dipole magnets. They should flip the spin vector by 180° around a given precession
axis, that for RHIC lies in the horizontal plane at £45° with respect to the longitudinal
axis. Another requirement is that the orbits should be compensated, i.e. a particle
entering on axis with zero angle should emerge on axis and with zero angle.

In this note we will analyze the optimum value of the magnetic fields of the helices
from the injection to the top energy.

2. Spin rotation matrix

For a complete analysis , we have revisited the E.Courant * and M.Syphers 2

formalism to find a slightly more general form of the spin matrix. A first order Spin
rotation matrix for a perfect helix with hard edges and without fringe field effects has
been derived on the assumption of a nominal 360° field rotation as we proceed along
ﬂ the axis of the magnet.

The matrix for a snake depends on G=. We shall calculate the values of the
magnetic fields of the outer (B;) and inner (B;) helices that optimize the snake -i.e.
that produce the required spin rotation and precession axis-. Note also that for this
idealized snake the orbits are automatically compensated.

3. Matrix analysis

Based on the formalism by E.Courant, let us write a general expression for the
spin matrix of a helix , when its precession axis and rotation angle are not nominal.
To lowest order, considering the coordinate frame shown in Fig. 1, the magnetic field
components ® are:

By = —Bgcos [k(s — s1) + 4]

B, = Bysin [k(s — s1) + o] (1)
B,~0
x,y,z are radial axis, vertical axis and longitudinal axis respectevely.

While:

- By is the highest value of the magnetic field;

- s; and o are the longitudinal coordinate and the angle of the field with the vertical
at the entrance of the helix;
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k=— (2)
with k£ > 0 for a right-handed helix, and £ < 0 for a left-handed. A is the lenght

of the magnetic field inside the helix.
The spin of a charged particle obeys the BMT Equation *.

S < =
'CZS———-SXQ, (3)

where the precession frequency vector 0 is
0 =[(1+Gv)B. + (1 +G)By)/Bp, (4)
B, and éll being the parts of the field perpendicular and parallel to the particle

velocity.
Following 1, let us write in spinor notation

§ =iz, (5)
with o the Pauli matrices.
From Egs. (3) and (5) we obtain
av i, =
';1; - 5(0- ) Q)\II, (6)
with
_1+Gy
=5, By (7)
where G = 1.7928 is the proton gyromagnetic factor, v = "% ~ E(GeV) the

Lorentz factor and Bp = B o~ X22, Inserting the expression for the field of Eq. (1),
the diff. Eq. (6) becomes

dav ¢

R {o3cos [k(s — s1) + a1] — o2 sin[k(s — s1) + a1]} 0. (8)
Using the relation between Pauli matrices o, = —i0307 we can write
o3 cos [k(s — 81) + 1] — oy sin [k(s — s1) + ay] = ggeiorFlems)tanl (9)

Eq. (8) becomes

(fi_‘.f = -;—fsa3ei”1[k(s"s‘)+"1]\11. (10)

Following !, let us introduce the quantity

o(s) = eililstaily(s) (11)



From (8), after some algebra, we obtain a diff. equation for ¢:

dp 1

35 = glkortros)e (12)
A general solution is ‘
p(s) = estbrrtronlomaly(sy). (13)
Using again the definition (11) to express ¥(s) and ¥(s;), we arrive at the spinor
transformation
U(s) = MU(sy) (14)
with M a 2 X 2 matrix,
M = e———z-al[k(s—sl)-i-al]ez(ka'l +n03)(s—sl)e—ala1 (15)

Here, oy = k(s — s1) + «a; is the orientation angle between the helical field and
the vertical at the end of the helix.

Let us explicitly calculate the matrix for the full helix, i.e. for L = s — s;, where
L is the length of the helix. A general expression for the spin precession matrix of an

angle p around an axis bis® o
M = e~3H(D) (16)

or
O AL .

M = cos= +1 5 sing (17)

with b = |3| = /02 + b2 4 b2. Using this relation we can obtain the expression for u

and b as

cos (g) = %TT‘(M). (18)

b= [2 sin <2>] Tr(dM). (19)

Consider the ideal case of a hard edge helix (no fringe field) with a magnetic field
starting vertical (snake-like helix) and a field rotation of 360°

L=
B,;(.sl) =0

2
By(s1) = Bo (20)
Qa1 = 0

In this case, the matrix for the full helix becomes
M — _e%(ko'l-i-l‘ias) (21)

In the ideal case, from Eq.(21) we obtain the following expression for the precession
angle

(%) L] l 7 kL
cos 2 —cos|: l-I- \/__Esm[ <k> sin 5
k

(22)



(a)

Figure 1: (a) (zyz) is the accelerator coordinate frame and n the normalized precession
axis. (b)(uvw) is a coordinate system where the spin precesses around the b = &
axis.

and for the components of the precession axis
/ 2

b, = —&—=t—sin [L“L 14+ (% ] sin %2t

k /1+(%)2 2 (k) 2

2

b =-’i—1—sin[&£ 1+ (2 ]cosgﬂL 9
vy = % \/1:‘%? z \ (k) 2 (23)
b, = ———1( X sin [’—“2&\/1 + (%)2} cos 22321 — cos [%\/1 + (%)2} sin et

1+(%

For spin tracking with Spink ® we need a 3 x 3 matrix in the coordinate space.

This matrix can be expressed by transforming a rotation around gby a rotation of
the coordinate system

—~

M =RPR (24)
/\1 m cosy - sin H 0 /\1 /\2 /\3

M= 2 2 vo | x| sing cosp O | x| m m m (25)
/\3 N3 Vs 0 0 1 V, Vy Us

With reference to Fig. 1 let us consider two coordinate systems. (zyz) is the ac-

celerator istantaneous frame, and (uvw) a frame where % = b (@ and ¥ are arbitrary).
A, 4, v are the direction cosines of (uvw) with respect to (zyz) given by

cos 0 —sind
A=| —singsind |, n=| cos¢ |, v=]| —sindcosd (26)
cos ¢sin 8 sin ¢ cos ¢ cos 8



An explicit expression for the 3 x 3 rotation matrix is

v+ Anc v + Argc+ Bias vyvs + Ajsc+ Biss
M® = | vy + Ajge — Bigs vi + Agc vov3 + Agsc + Bass ) (27)
s+ Ajgec — Bias v + Agsc — Bass V2 + Assc
with
Aij = Xidj + nimj
Bij = Ainj — mid;
c=cospy
s=sinpu

(28)

The spin precession is finally characterized by three angles

g ( precession angle around 3)
f = arctan = (29)

—_ by
¢ = arctan T
The matrix form for the whole snake is obtained by multiplying the matrices of the

four modules
A/[snake - M4 : M3 : M2 4 Ml (30)

For an ideal snake the three angles will be

p = 180°
0 = 45° (31)
¢ = 0°

4. Optimization

To verify the behaviour of the magnetic field for different energies a fortran pro-
gram Mini has been built. This program is based on the Powell method (without

derivatives) 7 for the minimization of a multidimentional function.
We want minimize for instance the analytical expression

F(B1,Ba) = (o — p)* + (g0 — #)* + (60 — 0)°

where the index 0 refers to the ideal angles given in (31), while 4, ¢ and 0 are the
angles for a generic rotation. They can be obtained from the snake matrix (30) as:

4 = arccos [mg—)—:l} (32)
_ M(1,2) + M(2,1)
¢ = —arctan [M(1,3)-|-M(3,1)} (33)



6 = arccos [\l 2(;:7]}{((;‘};))] (34)
Powell uses some subroutines for the unidimensional minimization along a set of
linearly indipendent directions.

5. Magnetic fields

Because of the presence of « in the snake matrix, the fields will change with proton
energy. This means that to obtain (31) for the spin rotation angles, B; and B; shall
vary. The results are shown in Fig. 2 and Fig. 3.

The two fields grow quickly at the injection and for highest energies they become
constant. Considering the expression of x, we have
- Low energies, Gy = 1 = £ x k(7).

- High energies, Gy > 1 = & ~ £ (constant).

If magnetic fields don’t change, the angles would not maintain the ideal values. In
Fig. 4 and Fig. 5 we consider a constant value of magnetic fields for every energy. We
have a perfect spin rotation only for a given energy while for different energies the
angles are no more the right ones.

6. Spin tracking

As a first exercise we can analyze the spin tracking for two different range of energy
applying the optimized B; and B, obtained from the minimization program. If we
reverse the fields, we can compared the results in Fig. 6 and Fig. 7. There is a clear
difference between the two cases. This means that optimum field values for a high
energy range can be applied also to the lowest range, but the opposite is not true. To
explain this, recall that the resonance amplitudes are in general stronger at higher
proton energy as shown in Fig. 8 8. If we decide to vary the magnetic fields with
energy, this variation is larger at the injection than at the highest energies, where, as
previously obtained, B; and B, are almost constant. Therefore, it may be preferable
to use fixed field values.
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Figure 2: Optimized magnetic field in the outer helices as a function of the energy
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Figure 3: Optimized magnetic field in the inner helices as a function of the energy
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Figure 4: Rotational angle as a function of energy for a fixed value of By and B,
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Figure 5: Precession axis angle as a function of energy for a fixed value of By and B,
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Figure 6: Comparison between different magnetic fields values to overcome the Gy =
381.82 resonance.
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Figure 7: Comparison between different magnetic fields values to overcome the Gy =

63.82 resonance.
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Figure 8: Intrinsic resonance strenght
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