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Analytical Field Calculation of the Slotted Helical Dipole
T. Tominaka (RIKEN, Japan)

1. Introduction

The magnetic field of the slotted helical dipole designed and fabricated at the Magnet Division of BNL is calculated
analytically in this paper. A schematic view of this superconducting helical dipole is given in Fig.1 The purpose of
this paper is to obtain the contents of multipoles expected for the slotted helical dipole. The relation between helical
multipoles and 2-dimensional multipoles is also presented. In addition, this analytical calculation is compared with
the numerical calculation with the 3-dimensional magnétic field calculation code, OPERA-3d/TOSCA. [1]

2. Magnetic Field of a Originally Optimized Helical Dipole Magnet

According to the method described in Appendix, the magnetic field of a helical dipole magnet optimized by R.
Gupta at BNL can be calculated analytically with the assumption of the infinite length. A quarter of the cross section
of this optimized slotted helical dipole magnet is shown in Fig.2. Each black dot corresponds to a superconducting
strand used as a conductor. The summation in Eq.(A3) is made for all 864 sets of four helical line currents with
dipole symmetry. For the comparison, the analytically calculated contents of multipole expected for this helical
dipole together with the 2-dimensional multipole coefficients for the reference radius 10 = 30 mm, are shown in Table
1 for the case without iron yoke and in Table 2 for the case with iron yoke. In this calculation, the effect of the iron
yoke is calculated with the method of image currents, with the assumption of the helical image current similar to the
straight image current. The relative permeability of iron yoke with the inner diameter of 168.9 mm (= 6.651 inches)
is assumed to be infinite, and the current of conductor in the white region shown in Fig.2 is different from that in the

gray region,

Current #1 (white region) : 11 =290 A,
Current #2 (gray region): 12 =290 Ax 11/9=354.4 A.

The reference field Bref(k), and helical multipole coefficients, bn(k) (=b-helix), of the 3-dimensional helical dipole
listed in Table 1 and 2 correspond to those of Eq.(A1). On the other hand, the reference field Bref, and 2-dimensional
multipole coefficients, bn (=b-2d), of the 2-dimensional dipole listed in Table 1 and 2 correspond to those of Eq.(A5).

Therefore, it can be thought that the twisting from the 2-dimensional dipole to the helical dipole has mathematically
two effects of changing the character of the function describing the field, and changing the values of multipoles
determined by the current and position of the conductor.

3. Magnetic Field of a Actual Helical Dipole Magnet

The helical dipole magnet fabricated actually is deformed from the above-mentioned optimized one for the ease of
machining. The magnetic field of this magnet slightly deformed is also calculated analytically. The cross section of
this slotted helical dipole magnet is shown in Fig.3. The dimensions of this cross section are obtained from the
design sheets written in BNL.

In the case without iron yoke, the contents of multipole expected for this helical dipole together with the
2-dimensional multipole coefficients for the reference radius rQ = 30 mm, are also shown in Table 3. The twist (or k)
dependence of the reference field Bref(k), and the helical sextupole coefficient, b3(k), are shown in Figs.4 and 5,
respectively. The expressions of the radial magnetic field By, the azimuthal magnetic field B 4 , and the y-directional
magnetic field By on the circle of radius r= 30 mm can be derived from Eq.(A1) with the helical multipoles shown in
Table 3 as follows,




B(r=30 mm, 6, z=0) = 2.794 (sin[6] - 19.3 10”* sin[3 6] + 2.8 10 sin[5 0] - 0.095 10™* sin[7 6]
- 8.5 10" sin[9 0] + 3.2 10™ sin{11 6] + 0.16 10™* sin[13 8] - 0.36 10™* sin[15 0] D)
+0.048 10 sin[17 6] + 0.030 10™* sin[19 61)

Be(r=30 mm, 8, z=0) = 2.789 (cos[6] - 19.3 10™* cos[3 6] + 2.8 10™ cos[5 6] - 0.095 10™ cos[7 6]
- 8.5 10" cos[9 8] + 3.2 10™ cos[11 8] + 0.16 10™* cos[13 6] - 0.36 10™ cos[15 6] 2)
+ 0.048 10™ cos[17 6] + 0.029 107 cos[19 9])

By(r=30 mm, 8, z=0) = 2.792 (1 - 27.0 10 cos[2 6] + 2.9 10™* cos[4 6] - 0.099 10™* cos[6 6]
-8.5 10" cos[8 6] + 3.2 10™ cos[10 8] + 0.16 10 cos[12 61 - 0.36 10 cos[14 6] (3)
+0.048 10™ cos[16 theta] + 0.029 10 cos[18 6])

These expressions are the same forms with Eq.(AS) or Eq.(A7). On the other hand, the 2-dimensional multipole
coefficients can also be derived from the y component of magnetic field By on the x-axis as shown in Fig.6 by
fitting. The expression is the same following form with Eq.(AS8),

By(r=x, 6=0, z=0)=2.787(1. -11.510* (rl)% 2.8 10" (;‘—0)“ - 0.076 101‘: (%)6 -8.4 10" (;Xg)s

+3.010°(X)°+ 020 10* (2)*-03410%(x) %)

+0.030 107 (rzo-)“ +0.034 10 (:_0)1 )

From the comparison between Eq.(3) and (4), the 2-dimensional sextupole coefficients b3 = - 11.5 104 derived
from the field distribution of By on x-axis is especially different from b3 = - 27.0 10-4 derived from the field
distribution on the circle. This means that 2-dimensional multipole coefficients are not exactly applicable for helical
dipole. The field distribution of By in the central region is shown in Fig.7, on the style of the 3-dimensional plot.

Similarly, in the case with iron yoke, the contents of multipole expected for this helical dipole together with the
2-dimensional multipole coefficients for the reference radius rQ = 30 mm, are also shown in Table 4. The
expressions of the radial magnetic field Br, the azimuthal magnetic field B 4 , and the y component of magnetic field
By on the circle of radius r= 30 mm, and the y component of magnetic field By on the x-axis are as follows,

B«(r=30 mm, 8, z=0) = 4.513 (sin[0] - 2.5 10 sin{3 8] + 0.55 10™* sin[5 6] - 0.14 10™* sin[7 6]
- 5.3 10 sin[9 0] + 2.0 10™ sin[11 0] + 0.10 10 sin[13 ] - 0.23 10 sin[15 6] (5)
+0.030 10 sin[17 6] + 0.018 10 sin[19 8])

Be(r=30 mm, 0, z=0) = 4.506 (cos[6] - 2.5 10™* cos[3 6] + 0.55 10 cos[5 6] - 0.14 10™* cos(7 6]
-5.3 10™ cos[9 0] + 2.0 10” cos[11 6] + 0.10 10 cos[13 6] - 0.23 10™ cos[15 6] (&
+0.029 10™ cos[17 6] + 0.018 10" cos[19 8])

B,(r=30 mm, 6, z=0) = 4.510 (1 - 10.2 10”* cos[2 6] + 0.55 10™* cos[4 0] - 0.14 10 cos[6 ]
-5.3 10" cos[8 0] + 2.0 10™* cos[10 6] + 0.098 10™* cos[12 0] - 0.23 10 cos[14 6] 7)
+0.030 10 cos[16 theta] + 0.018 10™* cos[18 6])

By(r=x, 6=0, z=0) = 4.503 (1. +5210" (rx—o)z +0.54 10" (%)“ -0.13 10" (rl-)ﬁ -5.210% (}X;)“

+19 10 (X)°+ 012 10 (X) - 0.21 10 (X ’ ¢8)

+0.019 10" (rx_o)“’ +0021 107 (;%)”)

The field distribution of By in the central region is shown in Fig.8.



4. Comparison Between Analytical and Numerical Calculation

The field of the helical dipole magnet can be numerically calculated with the 3-dimensional magnetic field
calculation code, OPERA-3d/TOSCA. The cross section derived from the input data of the conductor for the
OPERA-3d/TOSCA, prepared by M. Okamura is shown in Fig.9. This cross section is slightly different from that
shown in Fig.3.

In the case without iron yoke, the contents of multipole expected for this helical dipole together with the
2-dimensional multipole coefficients for the reference radius rQ = 30 mm, are shown in Table 5. These values are
almost same with those shown in Table 3. Similarly, the helical multipole coefficients derived form the radial
magnetic field Br, the azimuthal magnetic field B ¢, and the z component of magnetic field Bz at the center z=0 of
helical coil, calculated with OPERA-3d are also shown in Table 6. From the comparison between Tables 5 and 6, it
seems that the analytically obtained results are almost consistent with those obtained with the 3-dimensional
magnetic field calculation code, OPERA-3d. The difference may come mainly from the difference of the length of the
helical dipole. The analytical calculation assumes that the length of the helical dipole is infinite, but the field
calculation with OPERA-3d is made for the actual helical dipole of the finite length with coil ends shown in Fig.1.
In the case without iron yoke, the field distribution of By at z=0 calculated with OPERA-3d is shown in Fig.10.

5. Conclugion

The contents of multipole expected for the slotted helical dipole are obtained analytically, with the comparison
between helical multipoles and 2-dimensional multipoles. The analytical results are almost consistent with those
obtained with the 3-dimensional magnetic field calculation code, OPERA-3d. This analytical method may be also
useful for the estimation of the effect of the geometrical distortion due to the twist on the multipoles of the dipole.
In addition, the confusion should be avoided among the various multipoles with different definition, (1) the
conventional multipole coefficients for the 2-dimensional dipole of the same cross section with the 3-dimensional -
helical dipole, (2) the 2-dimensional multipole coefficients for the 3-dimensional helical dipole, and (3) the belical
multipole coefficients for the 3-dimensional helical dipole. From the viewpoint of the field analysis, it seems that
the helical multipole coefficients naturally extended from the conventional ones are most reasonable for helical
dipoles.
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Appendix 1. Magnetic Field of 3-dimensional Helical Dipole Coils
The interior magnetic field of helical dipole coil with the infinite length is as follows, [2]

B{(r0.z)=- a%’;}l = Brei(k) roé'1 n! [n zm}nk In(nk 1) {-an(k) cos (n(B -k z)) + ba(k) sin (n(e -k z))}
Bo(r.02) = - }—aa%‘l = Bulk) roéI n! [;lf—r—o]“%fl {200 sin (n(8 - k 2)) + b cos (n® - k2))} CAI)
B(r02) = - aa% = Bai®) 10 il k! [n lfm]"mn k1) {200 sin (n(0 - k 2)) + ba®) cos (n(® - k2))}

where k = 2 r /L, L is a twist pitch length. Then, for four helical line currents with dipole symmetry,



helical line current #1 : current +1 , radius a, angle ¢,
‘b helical line current #2 : current - I, radius a, angle = - ¢,

helical line current #3 : current - I, radius a, angle =+ ¢,

helical line current #4 : current +1 , radius a, angle - ¢,

Bref, an , bn are calculated as follows,

An=Bref an=0 for n=1, 2, 3, 4, ...,
Bn=Bref bn=0 for n=2, 4,6, ...,

and

- - 4“’0 1 n
Bu(k) = Bret(K) ba(k) = = Foom (n k r0)" (k 2 Kn1(n k 2) + Ku(n k 2)) cos n@ (A2)

forn=1,3,5, ..., oo,

Then, for many sets of four helical line currents with dipole symmetry,

By(k) = Bres(k) bo(k) = - 4_110_ —1  (kr) z I; (k 2 Kqo1(n k &) + Kn(n k a)) cos no; (A3)

T 2'(n-1)! 1o n

for n=1, 3,5, ..., ©.

With the definition of b1(k) =1 (=constant), Bref(k) = B1(k). Then, the asymptotic form for the reference field
‘» Bref(k), and these helical multipole coefficients an(k), bn(k) as k—0 (L—>0) is,

}Limk_,o [Bret (k)] = Bres .
Limgo0 [aq (k)] = 2a 4)
‘ Limg—0 [ba (k)] = ba

That is,

an(k) -> an (European) = - an-1 (American) : skew multipole coefficient of the 2n-pole
bn(k) -> bn (European) = bn-1(American) : normal multipole coefficient of the 2n-pole

Appendix 2. Magnetic Field of 2-dimensional Dipole Coils
The interior magnetic field of 2-dimensional dipole coil with the infinite length is as follows, on the European

definition, [3]

B{r.0) =- a—¢ = 194, =Brr Y, ()" (-aa cos n@ + ba sin nO)
or r 200 a=1 I0
% 9A, . = (A5)
Bo(r,0) =- L =- 2 = By (L)™' (b cos 1O + 2 sin 16)
rae or n=1 T0

Then, the x and y components of field become,



Bx(r,8) = B«r,6) cos O - Be(r.6) sin 0 C 26)
By(r,0) = Br,0) sin O + Boe(r.0) cos O

’ B.(r.0) = Bmfil @20 cos [@-1)6] + b sin[@-1)6]} )
‘ By(r.0) = Bmle %)"'l{an sin [(n-l)O] + b cos [(n-l)G]}

Therefore, on the case with the top-bottom symmetry, an=0 for n=1, 2, 3, ..., %, the y component of field
By(x) on the x axis becomes,

By(x) ly=0 = By(r=x, 6=0) = Bo(r=x, 6=0) = Bx3, b,,%)“‘1 = Brs (b1 +bp+ m(%)" + o ) (A3)

In addition, for many sets of four line currents with dipole symmetry,

Bn=Bresby=- 12—%)— o™ z I; a™ cos ng; (A9)
i .

forn=1, 3,5, ..., o©.
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Table 1 Helical and 2-dimensional normal multipole
coefficients derived from the field distribution with the
reference radius r0=30 mm for the cross section shown

in Fig.2 without iron yoke.

n b-helix b-2d

(Bref) 2.77096 LT3 2.71479 (T3]

1 1. 1.

3 -0.00186318 -0.00188604

5 0.000265931 0.000263292

-6

7 -9.96646 10 -0.000012757

9 ~-0.000792894 -0.000842947

11 0.00029096 0.00031248

13 0.0000146582 0.0000158341

15 -0.0000319603 -0.0000349333
-6 -6

17 4.04886 10 4.46808 10
-6 -6

19 2.38084 10 2.64973 10

Table 2 Helical and 2-dimensional normal multipole
coefficients derived from the field distribution with the
reference radius r0=30 mm for the cross section shown

in Fig.2 with iron yoke. :

n b-helix b-2d
(Bref) 4.49623 [T] 4.37827 (7]
1 1. 1.
3 -0.000189721 -0.000166809
5 0.0000398628 0.0000286006
7 -0.0000144962  ~0.0000172929
9 -0.000490655 -0.000525023
11 0.000179759 0.000194288
-6 -6
13 9.02359 10 9.80574 10
15 ~0.000019701 -0.0000216662
-6 -6
17 2.49566 10 2.771 10
-6 -6

19 1.46729 10 1.643 10



Fig.3 Cross section of a slotted helical dipole deformed
for machining from the optimized one.

Table 3 Helical and 2-dimensional normal multipole
coefficients derived from the field distribution with the
reference radius r0=30 mm for the cross section shown

in Fig.3 without iron yoke.

n b-helix b-2d
(Bref) 2.78725 C711] 2.73119 {717
1 1. 1.
3 -0.00192387 -0.00194781
5 0.000282415 0.000280139
-6
7 -9.44077 10 -0.0000122488
9 -0.000838267 -0.000890559
11 0.000312108 0.000334906
13 0.0000160162 0.0000172859
15 -0.0000356478  ~0.0000389179
-6 -6
17 4.64905 10 5.1227 10
-6 -6

19 2.86908 10 3.18685 10
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Fig.5 The twist dependence of the sextuple coefficient b3(k).
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Fig.6 The field distribution of By on the x axis.
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Fig.7 The field distribution of By for the cross section shown
in Fig.3 without iron yoke.

Table 4 Helical and 2-dimensional normal multipole
coefficients derived from the field distribution with the
reference radius r0=30 mm for the cross section shown

in Fig.2 with iron yoke.

n b-helix b-2d
(Bref) 4.50281 [T] 4.38495 [T1]
1 1. 1.
3 -0.000246234 -0.000224954
5 0.0000542499 0.0000435128
7 -0.0000138513 -0.0000166319
9 -0.000520782 -0.000556905
'11 0.00019361 0.000209095
-6
13 9.90482 10 0.0000107552
15 -0.00002207 ~0.0000242451
-6 -6
17 2.87813 10 3.19117 10
-6 -6

19 1.77598 10 1.98496 10
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Fig.8 The field distribution of By for the cross section shown
in Fig.3 with iron yoke.
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Fig.9 Cross section of a slotted helical dipole, obtained from
the input data for OPERA-3d.
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Table 5 Helical and 2-dimesional normal multipole
coefficients derived from the field distribution with the
reference radius r0=30 mm for the cross section shown

in Fig.3 without iron yoke.

n b-helix b-2d
(Bref) 2.78779 (71 2.73175 [T]
1 1. 1.
3 -0.00202305 -0.00205003
5 0.000326291 0.000326187
7 -0.0000102877 -0.0000132087
9 -0.000833307 -0.000885304
11 0.000318336 0.000341562
13 0.0000154094 0.0000166236
15 -0.000035921 -0.0000392179
-6 -6
17 5.17271 10 5.69637 10
-6 -6

19 3.09876 10 3.44077 10
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Table 6 Helical normal multipole coefficients derived
from Br, Btheta, Bz distribution on the circle of radius r=30 mm

at z=0, calculated with OPERA-3d

n bn-r bn—-theta bn-z
(Bref) 2.7922 [13 2.7922 €T3 2.7922 [71
1 0.999905 1.00007 1.00252
3 ~0.00221742 -0.00222662 -0.0023024
5 0.000279781 0.000289925 0.00027661
-6
7 -0.0000240421 -7.18715 10 -0.0000102329
9 -0.000851626 -0.000829641 -0.0008293
11 0.000326181 0.00031585 0.000319438
-6 -6
13 0.0000122363 4.54053 10 2.13571 10
15 -0.000030323 -0.0000533146 ~-0.0000550198
-6 -6 -6
17 -4.7188 10 6.84087 10 7.83723 10
-6
19 -0.0000164482 -0.0000114868 -7.91002 10

Fig.10 The field distribution of By for the cross section shown
in Fig.9 without iron yoke,

calculated with OPERA-3d



