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Magnetic Field Calculation of Helical Dipole Coils

T. Tominaka (RIKEN, Japan)
April 11, 1996

1. Introduction

The magnetic field of helical coils has been examined by several authors [1,2,3,4,5]. The aim of this paper is to
give the expression of multipole of helical magnets for the coil design. In addition, the comparison between the
analytical and numerical calculations is presented for the simple helical dipole coils.

2. The Magnetic Field of Helical Coils
The treatment of this section follows Morgan's [4] most closely. 3-dimensional Laplace's equation in circular
cylindrical coordinates is as follows,
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Since the winding is periodic in z with a pitch length L, the general solution is,
on (@, 0,2) = 3 (Ch In(nkr) + da Ku(nkr)) {a cos (nce - kZ)) + by sin (n(@ - kZ))) (2)
n=1

where k = 2 r /L, In(nkr) is the modified Bessel function of the first kind of order n, and Kq(nkr) is the modified
Bessel function of the second kind of order n. Of the two, In(nkr) is finite at r=0 and increases to the infinity with
radius, and K(nkr) is infinite at r=0 and decreases with radius. Then, the solution nearer the axis than conductors has
the form with dn' = 0, and the solution outside the conductors has the form with cn' = 0.

Considering the form of the ascending series of In(nkr),
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For the scalar potential nearer the axis than conductors of helical coil, we can define the following form,

on (5 9,2)='Bmfr0§l (n-l)![ 2 ]"In<nkr) (-2 cos (n(@ - k2) + ba sin (n(® - k2))) (4)
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where we follow the European Definition for the multipole coefficients, ag, bn, which is different from the
American Definition. The relationships between these coefficients are,

an (European) = - an-1 (American) : skew multipole coefficient of the 2n-pole
bn (European) = by-1(American) : normal multipole coefficient of the 2n-pole

The asymptotic form for this scalar potential as k—0 (L—0) is,

Limgo [0 (5, 8, 2)] = ¢24 (5, 6) (5)

423 (.0) = - B 103, L @Y ¢an cos n6) + bu sin (n6)) (6)



where § 24d(r, 8 ) is the scalar potential nearer the axis than conductors of 2-dimensional non-spiral coil.
From this scalar potential, the interior magnetic field of helical coil is,

Br(r,ez)=-§%=Bmfro i n![ 2
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Bo(r,0.2) = - %‘;ﬁ =Buto il n! [_2_]1@ {aa sin (0@ - k) + bacos (n@-k2)}  (7)
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In this case,
By (=0, 8=0, z=0) = Be(r=0, 6=0, 2=0) = Brer by (8)

Then, By(0,0,0)=Bref with the definition of b1=1. The above expressions are same with those given in the
Appendix of a paper by J. Blewett et al., with the condition that Bref=B0, b1=1, and other multipole coefficients are
zero. On the both cases of helical and 2 dimensional non-spiral dipole coils, Bref are the central dipole field, which
are different. Similarly, the multipole coefficients, an , b, are different for both coils. However, the above
expressions are beneficial for the comparison.

On the situation that the currents are confined to lie on the surface of a circular cylinder of radius a, the surface
currents will give rise to a discontinuity of the components Bz, B 4 , at the interface of radius a, but the radial
component Br will pass continuously through this interface. Then, the exterior magnetic field of helical coil is,

Bx(1,0,2) = Brs o é"i n! [n lfm} k Ilé‘((';l:;)) Ka(nkr) {-an cos (n(e k z)) + b sin (n(G k Z))}
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B(1,9,2) = Bres To 2 -k)n! [n zm] I?(z::i?) Kn(nkr) {an sin (n(e k z)) + b COS (n(e k Z))}

The values of Bref, an, bn can be determined for the current element. Appling Ampere's law for a closed pathin
z=constant plane enclosing the current element at radius a, we can obtain the following equation,

(Bo,out - Bo,in) fe=s = 1o jz A2 (10)

Then, the normal multipoles Bn and the skew multipoles An, in addition, the normal multipole coefficients bn and
the skew multipole coefficient an are obtained with the Wronskian relation,

In(nka)K;,(nka)-I;,(nka)Kn(nka)=-——li—— ()
nKa
as follows,
An=Breran=E2 K - sin (n(@ -
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T 2°(m-1)! 1o

With the definition of b1=1, Bref = B1



Then, for four helical line currents with dipole symmetry,

helical line current #1 : current +I , radius a, angle ¢,
helical line current #2 : current - I, radius a, angle = - ¢,
helical line current #3 : current - I, radius a, angle =+ ¢,
helical line current #4 : current +I , radius a, angle - ¢,

Bref, an , bn at z=0, are calculated as follows,
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where the following relation between the current and the current density is used with the real cross section S of the

conductor and the projected cross section Sz of the conductor on the z=constant plane.
=1
73
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where « is the pitch of the winding so that the relationships between the above-mentioned k and « arek = 1/(a

tan « ). Then,
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Due to the dipole symmetry, An=0 for n=1, 2, 3, 4, ..., and Bn=0 for n=2,4,6, ...,
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for n=1,3,5, ..,

With the following relation,

Kinka)=- (K,,.l(n ka) + k—la- Ka(n k a))

we can obtain the following expression,
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for n=1, 3,5, ..., ®

Especially, for n=1,
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Similarly, for four helical current blocks with dipole symmetry,

helical current block #1 : current density +jz, radii aj, ap, limiting angles ¢ 1, 4 2,

helical current block #2 : current density - jz, radii aj, a2, limiting angles #-¢1, 7-¢2,
helical current block #3 : current density - jz, radii a1, a2, limiting angles x+¢ 1, 7+ ¢ 2,
helical current block #4 : current density +j, radii a1, a2, limiting angles - § 1, - ¢ 2,

Bref = B1, ba are calculated as follows,
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3. Magnetic Field Calculation of Helical Coils with the Biot and Savart's Law
The treatment of this section follows Smythe's [6]. The conductor position (Xp, Y, zp,) of the right-handed helicai
coil is described, using the angle ¢ , as follows,

xn =2 cos (Q+Qo), yn =2 sin (@+¢p), z» = 2 @ tan ¢, (23)

where a is the radius of helical coil, « is the pitch of the winding so that the relationships between the
above-mentioned k and « are k = 1/(a tan « ). First of all, using the Biot and Savart's Law, we calculate the magnetic
field of the following position (xp, ¥p, zp) on the axis,

x=0,yp=0,2 =2, @)

The components of the vecmri’: (Rx, Ry, Ry) from the helical coil to the position (xp, pr zp) on the axis, and
the condutor element vector d_g = (dxp, dyh, dzn) are,

Rx = Xp - Xu = - 2 COS (P+QPo),

Ry = ¥p - Y = - a 5in (Q+@o), (25)

R;=7zp-yn=2z-a P tanq,
l dxy = - asin (¢+po) do,

dyn =a cos (@+@p) do, (2b)
\ dz; = a tan o g,

The y component By of the magnetic field of the right-handed helical coil with the current I are,

Ll..
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The other components Bx, Bz are described similarly.
For the infinite long helical coil, ¢ j=- *, ¢ f= 0, The y component By at z=0 is,

B o Molgano [ €0s(9+@o)+ 0 sin (¢+po)
0= {1 + ¢ tan? oc)m deo
- - (28)
_mltanq cosQ + @ sinQ 2 sing +¢ cos@
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where the second term of integrand vanishes, as it is odd. Then,
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Mol
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Then, for four helical line currents with dipole symmetry, the transeverse field magnitude at axis of the helical
winding Bref is obtaned as follows,

=- Lo 1 1 1 I o L I :
Bt 2matan O (tan o KO(tan oc) + Kl(tan a)) { cos ¢ - 1 cos (m-¢) - Lcos (m+p) +Icos ( ‘P)}
=24l 1 1 1
Tatan o (tan o Ko+ KG oc)) cos ¢ (30)

=-2 1y (k a Ko(k a) + Ki(k )) cos @
This result is the same with the above expression of Eq.(20) which is obtaned with the different method.

Similarly, for four helical current blocks with dipole symmetry,
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For the off-axis position (xp, Ypr zp),



Xp=TC0S 0, Yp=rsin 0,2 =z, (32

w The components of the vector R = (-R? » Ry, Ry) from the helical coil to the position (xp, Ypr zp) on the axis, and
the condutor element vector ds = (dxp, dyh, dzp) are,

Rx =Xp - Xu =T cOS O - a cos (@+Qo),

Ry =Yp - yn =1 sin 0 - a sin (@+@g), 33)
Ri=%-yn=z-a@tanq,
dxu = - a sin (@+@p) do, :
dyn=acos (¢+@o) do, (34)
1 dzm=atanode,
Then, the magnetic field of the off-axis position of the helical coilis experssed as follows,
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These equations can be calculated numerically, and are used for the comparison with the analitycal calculations.

4. Comparison between the analytical and numerical calculations
For four helical line currents with dipole symmetry of current +I, radius a, angle ¢, with

Radius of helical line current a = 0.05 m,

Angle of helical line current ¢ = = /6,

Current I =- 1X105 A,

Pitch length L =2 m,

k=2n/L=1/atana)= m,

Pitch of the winding « = tan-1(1/0.05 =),
“ Reference radius for multipole rg = 0.03 m,



as shown in Fig.1-1 and Fig.1-2, the comparison between the analytical and numerical calculations is made. The
numerical calculation is made for the helical coil with the infinite length, that is, ¢ i=- %, ¢ f= c with the
numerical integration of Egs.(35)-(37), using Mathematica [7]. The results are shown in Fig.1-3 to Fig.1-10. The
agreement between the analytical and numerical calculations is quite good. The multipole coefficients derived from
the numerical calculation for each compoment of magnetic field at z=0 of the middle of the helical coil are shown in
Table 1-1, with the value of Bref = 1.41117 T for Bref of Eq.(7). In Table 1-1, the b-r means the normal multiple
coefficients derived from the radial component of field Br, the b-theta means that of B 4 , and the b-z means that of
Bz. These multipole coefficients are equivalent to those shown in Table 1-3. In addition, The multipole coefficients
of the non-helical dipole are shown for the comparison with those of the helical dipole in Table 1-3. The calculation
of the non-heical dipole is made for the infinite length and the same current I with that of the helical dipole. For the
helical coil with the length of one period L (= 2 m), furthermore, the multipoe coefficients derived from the
numerical calculation for each compoment of magnetic field are shown in Table 1-2, with the value of Bref =
1.41416 T for Bref of Eq.(7).

At z=0 of the middle of the helical coil, the dipole field By, z=( at the axis depends on the length of the coil, as
shown in Figs.1-11 and 1-12. From the analytical and numerical methods for the infinite length, using Eq.(20) or
(29), and the numerical method for the finite length of one period L (= 2 m), the dipole field By z=0 at the axis are
calculated, using Eq.(27), as follows,

Byz=0=141117T (analitical calculation for the infinite length),
By=0=141115T (numerical calculation for the infinite length),
By z=0= 141416 T (numerical calculation for the finite length of one period L=2 m),

The dipole field By z=( on the axis at z=0 of the middle changes periodically with the length of the helical dipole
coil. This dependence on the length for By 7= of the heical dipole is different from that of the non-helical one.

Similarly, for four helical current blocks with dipole symmetry of current density +jz, radii aj, ap, limiting
angles 4 1, ¢ 2, with

Inner radius of helical line current aj = 0.05 m,
Outer radius of helical line current a3 = 0.06 m,
Inner angle of helical line current ¢ 1 =0,
Outer angle of helical line current ¢ 2= 7 /3,
LengthL=2m,

Current I =-2X105 A,

Current density jz = 347 A/mm?2,
k=2r/L=1/(atane )= x,

Pitch of the winding « = tan-1(1/0.05 =),
Reference radius for multipole rg = 0.03 m,

as shown in Fig.2-1 and Fig.2-2, the comparison between the analytical and numerical calculations is made. The
numerical calculation is made for the helical coil with the finite length of one period, using the code OPERA-3d [8]
for the 3-dimensioinal magnetic field calculation. The results are shown in Fig.2-3 to Fig.2-8. The agreement
between the analitical and numerical calculations is quite good. The multipoe coefficients derived from the numerical
calculation for each compoment of the magnetic field at z=0 of the middle of the helical coil are shown in Table 2-1,
with the value of for Bref = 2.4627 T for Bref of Eq.(7). These multipoe coefficients are equivalent to those shown
in Table 2-2. In addition, The multipole coefficients of the non-helical dipole are shown for the comparison with

7



those of the helical dipole in Table 2-2. The calculation of the non-heical dipole is made for the same current I and
(ﬂ the same z-directional current density jz with those of the heical dipole, but the current densitys j for both of the
heical and non-heical dipoles are different.
At z=0 of the middle of the helical coil, the dipole field By z=( at the axis also depends on the length of the coil.
For the infinite length, using Eq.(21), and for the finite length of one period L, the dipole field at the axis are
calculated as follows,

Byz=0= 245618 T (analitical calculation for the infinite length),
Byz=0=24627 T (numerical calculation for the finite length of one period L=2 m),

The dipole field at the axis, Bref of Eq.(7) derived fer the helical coil with the infinite length is constant, but the
dipole field Bref of this helical coil with the finite length depends on the position as shown in Fig.2-9. This means
that Eq.(7) is not correct for the end portion of this helical coil.

5. Conclusion

An analytical expressions for the magnetic field and the multipole for the helical coils have been given. The
expression of the multipoles for the helical coil is more effective to optimize the cross sectional configulation of the
helical coil than those of the non-helical coil. Further investigation is needed for obtaining the expression of the
multipole for the ends of a helical coil.
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Appendix. The Magnetic Field of 2-dimensional Dipole Coils
On the European Definition, the scalar potential nearer the axis is as follows, [9]

¢ (@0 =-Brro3, 1 ()"¢aa cos 00 + ba sin n) (A1)

Similarly, the vector potential is as follows,

A (1.0)=-Brsro Y, % %)n(an sin n6 + ba cos nb) (A2)
n=1

The treatment of this section follows Me 2 and P. Schmiser's {10]. For four helical line currents with dipole
symmetry, of current +I, radius a, angle § , at the position (r, 8 ) of r<a, the multipole expansion of the vector
potential is as follows,

3

A; (r0.2.0)=2 “—;’:—’E ;11— &'cos ng cos nd (A3)
n=1

where, n=1, 3, 5, ...,

Then, the normal multipoles Bn, the multipole coefficients bn, and with the definition of b1=1, the dopole field
Bref are as follows,

ﬂ Bn=- 2Ho I r—lo{%o)" cos ng (A%)

T



2l (A5)

COs
Bi=Bw=-01, ?

a

1o |n-1 COS NQ (Ab)
(o)" cos @

Similarly, for four helical current blocks with dipole symmetry, of current density +j (=+iz), radii a1, a2, limiting
angles ¢ 1, ¢ 2, at the position (r, 8 ) of r<a, the multipole expansion of the vector potential is as follows,

22 [
A, (10)= J Az (r0ap ada j do

a1 °1
=-2 ”7‘: jngi %f‘ 21—n (a8 - a?‘“)ill-(sin n@, - sin nQ;) cos n (A1)
Then, the multipoles are as follows,
Ba(ro) = -ZEQ 1 {sm (n@y) - sin (n(pl)} [a87 - at™] CA8)
By =Bres=- g—;‘:—gj (sin @3 - sin @y) [22 - a1] (~9)
bo = B o 110" {5iD (0Q) - sin (ngp ez’ - 21°7] (A®)

Bi 0 2-n (sin@z-sin @) [a2-a]
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Fig.1-1 3—dimensional view of a helical dipole
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Fig.1-2 Four helical line currents with dipole symmetry
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Table 1-1 Normal multipole coefficients derived from the
numerical calculation for a infinitely long helical dipole
n b-r b-theta b-z
1 0.999829 0.999829 0.999848
-10 -10 -7
3 1.17709% 10 -2.85882 10 2.30424 10
5 -0.123864 -0.123864 ~-0.123864
7 ~0.0438636 -0.0438636 -0.0438631
-10 -10 -7
9 1.46902 10 -1.72114 10 5.28806 10
11 0.00548344 0.00548344 0.00548422
13 0.0019353 0.0019353 0.00193623
-11 -11 -7
15 4,85152 10 -6.91257 10 9.62863 10
17 -0.000240154 -0.000240154 -0.000239159
19 -0.0000844321 -0.0000844323 ~0.0000832915




Table 1-2 Normal multipole coefficients derived from the
numerical calculation for a helical dipole with the length
of one period L = 2 m

n b-r b-theta b-2z
1 0.999839 0.999843 0.997408

=12 -12 -10
3 5.56122 10 1.69874 10 -6.57707 10
5 ~0.123603 ~-0.123603 -0.123603
7 -0.043771 -0.043771 -0.043771

=12 -13 -10
9 7.85488 10 -9.,24768 10 -6.24984 10
11 0.00547187 0.00547187 0.00547187
13 0.00193122 0.00193122 0.00193122

-12 -12 =10
15 -1.5853 10 -1.91519 10 -5.70833 10
17 -0.000239648 -0.000239648 -0.000239648
19 -0.000084253¢% -0.0000842539 -0.0000842544

Table 1-3 Normal multipole coefficients derived from the
analytical calculation for the helical and non helical coils

n b-helix b-24

(Bref) 1.41117 1.38564

1 1. 1.

3 0 0

5 -0.124337 -0.1296

7 -0.044193 -0.046656

9 0 0

11 0.00558607 0.00604662
13 0.00198621 0.00217678
15 0 0

17 -0.000251127 -0.000282111
19 -0.0000892971 -0.00010156
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Table 2-1 Normal multipole coefficients derived from the
numerical calculation

n b-r b-theta b-z
1 1.00007 1.00007 0.997985

-6 -6 -7
3 2.131 10 ~-1.00099 10 -3.48087 10
5 -0.0172713 -0.0172738 -0.017302
7 0.00371776 0.00371768 0.00372466

-6 -6 -7

9 -5.2623 10 -3.24599 10 -7.38791 10
11 ~0.00021577 -0.000220001 ~0.000222324

13 0.0000631848 0.0000645796 0.0000570429

-6 -6 -6
15 -1.46767 10 3.99728 10 1.11228 10

-6 -6 -6
17 -4.26972 10 -4.27167 10 -4.07128 10

=7 -6 -7
19 4.42199 10 2.20902 10 3.01335 10

20



Table 2-2 Normal multipole coefficients derived from the
analytical calculation for the helical and non helical coils

n b-helix b~-2d
(Bref) 2.45618 2.4058
1 1. 1.
-17 -17
3 1.36929 10 1.4141 10
5 -0.0173424 -0.0182
7 0.00374336 0.00398657
-19 -19
9 3.77454 10 4.07687 10
11 -0.000224835 -0.000246199
13 0.00005935 0.0000658676
=20 -20
15 1.14528 10 1.28792 10
-6 -6
17 ~4.,54038 10 -5.17256 10
-6 -6
19 1.301 10 1.50127 10

zl




