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1 Introduction

The aim of this paper is to give a notation for the magnetic field error coef-
ficients of helical dipoles. These coefficients shall be the magnetic multipole
coefficients of ordinary dipoles when the helical wave length tends to infinity.
Such a notation is different from Ref. [1].

For comparison, the magnetic field error notation for ordinary dipoles will
be presented first. The notation for helical dipoles is given thereafter.

2 Magnetic Field Errors of Ordinary Dipoles

In a current free region in vacuum where the electrical field E is constant, the
magnetic field B can be derived from a scalar potential ¢ as

B =-vy. (1)

We will use a Cartesian coordinate system (z,y,z) and a cylindrical coordi-
nate system (r,#,z). Here, z denotes the horizontal, y the vertical and 2 the
longitudinal direction. Furthermore we have

r=r cosf,
(2)

y=r siné.

We consider a dipole of infinite length, thus neglecting fringe fields. The sym-
metry condition of such an element reads

P(r,0,2) = ¢(r, 0,2 + Az) (3
where Az is arbitrary. Therefore, the potential ¢ is independent of z:

¢(7':6’Z) = (r, 6)' (4)



Having a main field By in y-direction, the solution of the Laplace equation
A1 = 0 can be written in cylindrical coordinates as

P(r,0) = —Bg{rsin-ﬂ +
(5)
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+En+1 Ty

n=0

[a, cos ((n+ 1)8) + by sin ((n + 1)0)]}

The term —Byrsinf gives the main field and the coeflicients a, and b, de-
note deviations from the main field. The b, are called “normal” and the a,
“skew” multipole coefficients. Here, the subscript “0” denotes a dipole, “1” a
quadrupole etc. g is a reference radius. For the RHIC dipoles 7o = grco,-z is
used with reoi = 40 mm.

From equations (1) and (5) the magnetic field can be obtained in cylindrical
coordinates. We have

B, = By {sinﬂ + Z (r%)n [, cos{(n + 1)8) + by sin ((n + 1)0)]} ,

By = By {cosa +3 (%)ﬂ [bs cos ((n + 1)8) — ap sin ((n + 1)0)]} s (6)
n=0
B, =0.

The Cartesian components of B can be written as

B, =B, {i (r—’;)n [an cos(nb) + by sin(ne)]} ,

n=0

B, = By {1 + i (%)ﬂ [bn cos(nf) — ay sin(ne)]} ,

n=0

(7

B, =0,

which can also be expressed as

[=+] :l:+iy n
By +iB, = By [1+E(b,,+z‘a,,)( )

T
n=0 0

®)

Note that the European notation (see for example Ref. [2]) differs from the
American one presented here. The transformation is

b, (American) = by 41 (Buropean), 9

a,(American) = —an41(European). (10)



3 Magnetic Field Errors of Helical Dipoles

We consider again a magnet of infinite length, thus neglecting fringe fields. The
symmetry condition for a helical dipole is

P(r,0,2) = P(r,0 — kAz,z + Az), (11)

where Az is arbitrary. In other words, 8§ — kz = const. k = 2r/) is the wave
number and A the wave length of the helix. & shall have the positive sign for
right-handed and the negative sign for lefi-handed helices. Introducing the new
variable

b=0-kz, (12)

the symmetry condition (11) leads to a potential 1/ which is only dependent on
r and §:

W(r, 8, z) = P(r, §). (13)

The tilde shall remind the reader of the fact that f in a helix is similar to ¢ in
a ordinary dipole. Using (r,6) as coordinates and having a transverse helical
main Field By a solution of the Laplace equation Ay = 0 is (cf. Eq. (5) and
Ref. [1])

¥(r,0) = —Bo{ffl (kr)sin§ +

Zznﬂ nt2)! 1 Lopi((n+ 1)kr) x (14)

(n+1)n+2 rRknt

n=0

X [&n cos((n + 1)8) -+ b, sin((n + 1)5)] }

- .-where I, are modified Bessel functions. Similar to the ordinary dipole case,

the term —BO%h (k7) sin § yields the main field and the coefficients by, @, the
deviations thereof. Here, the I~),. are called “normal” and the @, “skew” helical
multipole coefficients (with respect to the direction of the main field Bp). The
subscript “0” denotes a helical dipole, the subscript “1” a helical quadrupole
etc. ro is again a reference radius.

The factors in (14) are chosen in such a way as to obtain the potential (5)
when the helical wave length tends to infinity. In this case ¥ — 0, # — ¢ and
the Bessel function can be approximated by (cf. Ref. [3])

1 2z



Now, the magnetic field can be computed as (cf. Ref. [1])

B, = 30{41{(1") sinf +

22t (a4 2) 1
(n+ 1)+l rBkn "+1

+ ({n + 1)kr) x

X [(’in cos((n + 1)8) + b, sin((n + 1)5)] },

BO = _"l_'Bza (16)
kr

B, = —By {4[1 (kr) cos 6+

2ntl(n+2)! 1
+Z n+l)"+1) nann+1((n+1)kr)x

n=0

x [7),, cos((n + 1)8) — G, sin((n + 1)(5)] },

where I’ denotes the derivative with respect to the argument of the Bessel
functlon

Since the Bessel function is nonhnear, the magnetic field of a helical dipole
is nonlinear too, even the main field given by By. Close to the magnet axis we
have r — 0 and the field can be approximated by

B, = —Bysin(kz),
By = By cos(kz), (17
B, = —Bok [z cos(kz) + ysin(kz)],

i.e. even close to the magnet axis there is a longitudinal field component that
will lead to coupling.
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