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1. Introduction

The following note describes a simple way to calculate the linear coupling effect of helical snakes
and rotators in RHIC by calculating the minimum tune separation (AQ,;;,) from the one-turn lin-

ear map[1]. The latter is derived by using a strictly linear model: the snakes and rotators are repre-
sented by matrices and the RHIC lattice by the transfer matrices between the location of the
snakes and rotators. The snake matrix obtained by numerical integration of an ensemble of trajec-
tories [2] is compared to the map for the same helical fields derived by differential algebra tech-
niques. [3] The matrices obtained numerically are also compared to the matrices for helical fields
calculated analytically by simplification of the equations of motions in the snake [4]. The respec-
tive coupling effects are evaluated. The linear coupling generated in RHIC by the Siberian snakes
and spin rotators seemns well within the capability of the decoupling correction system at injec-
tion, and negligible at storage energy.

This Note updates and completes the already published RAP Note 44.

2. The present snake and rotator design

The present nominal design for the RHIC helical snake [5] consists of 4 modules of 2.4 m length,
where the helix wavelength equals the module length (see scheme in Figure 1). The B, field for

the outer modules is 1.458 T and for the inner ones 4 T, a configuration that minimizes the closed
orbit excursions in the snake (Ay < 27 mm at the injection 7y of 27).

Two snakes will be installed in each RHIC ring at locations separated in betatron phase by ©Q,
and nQy (The nominal tunes for RHIC are Q, = 28.19 and Qy = 29.18) next to the Q7 quadrupoles

in the 10 o’clock and 4 o’clock interaction regions.

The present nominal design of the spin rotators is described in [6] and further optimizations based
on this selected design have been presented [7]. Similarly to the snake, it consists of 4 modules of
2.4 m length and helix wavelength. The fields, schematically shown in Figure 2, have different
magnitude on axis, orientation and helicity, in order to achieve a longitudinal polarization at the
experimental interaction points. The main conceptual differences from the snake in the rotator
design are that the amount of spin rotation required varies with energy and that the field integral
of the fringe fields does not cancel by symmetry over the 4 rotator modules, a nice symmetry
property -of the Siberian snake.

2 spin rotators per interaction region and per beam are necessary to longitudinally polarize the



proton beam in the 6 o’clock and 8 o’clock interaction points and to restore the vertical polariza-
tion downstream. The rotators are located symmetrically around the 6 o’clock and 8 o’clock IPs,
in the long drifts between the Q3 and Q4 quadrupoles. The location, slot length and schematic
design of snakes and rotators are represented in the RHIC lattice database RHIC92.0.5.

Figure 1. Schematic view of the RHIC helical snake.
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Figure 2. Schematic view of the RHIC helical spin rotator.
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3. The snake matrix
3.1 Numerical approach (SNIG)

The SNIG program [2], which is being used for snake design and optimization, allows the compu-
tation of particle trajectories in the snake by integrating the equations of motion in the magnetic
field of the snake. The helical field is expressed analytically as a continuous superposition of wig-
glers, an expression which has the right symmetry and satisfies Maxwell equations. A third order
expansion of this field proved accurate enough for trajectory calculations. For a detailed discus-
sion of the field and equations of motion in the helical snake see [81[9][10]. The SNIG program
has been extended to allow the derivation of first and second order transfer matrices from the inte-
gration of particle trajectories [5]. A distribution of particles is randomly generated in an ellipse,
whose parameters are defined by user-specified Twiss functions and emittances at the entrance of



-
L

BEAM

-13.593543< xo[mm] <
-13.660439< yo[mm] <

MATRIX
X

u

— ey ey

ERRORS

SPIN

start spin:
final spin:
with dispersion:
axis angles:
with dispersion:

™Mot me Dals

13.836684
13.976768

-1.052
-4.6343E-03

3.0430E-02

5.5211E-03

3.679E-07 -1.121E-05
-5.338E-08 -2.905E-06
2.586E-06 1.664E-04
3.269E-07 3.627E-06
XO**2 xo*uo
3.3652E-07 ]
2.2915E-08 i
3.3685E-07 ]
1.4042E-08 }

8.461E~09 2.233E-08
7.889E-10 1.836E-09
9.964E-09 2.552E-08

1.760E-10 6.504E-10

0.000000000 1
~-0.082344043 -0
3.4104E-03

136.037
0.1650

]
]
]
] +
]
|
]

* -1.35
* -1.39

9.
4.

— —— — —

-5.

-2.136E-07
9.274E-09
3.521E-06

-5.511E-08

xo*yo

1.
1.
1.

1.067E-08
7.909E~-10
1.132E-08
4.993E-10

.000000000
.993497064
1.7186E-04
-0.020
0.1459

1.055

1.
1.

7523< uvo[mrad] <
8677< vo[mrad] <

12.30 -
1681E-03 1.055 -
8444E-03 -5.6812E-02

7644E-05 -1.4654E-02

-4.337E~-05 -2.884E-04

~7.125E~-08 -1.752E-05
7.294E-06 5.385E-04
-3.314E-06 -5.017E-05
x0*vo uo**2
5414E-07 2.0716E-06
0162E-08 1.3494E-07

3858E-07 1.9557E-06

9.935E-08 6.040E-07
9.454E-09 4.343E-08
1.218E-07 6.678E-07

2.032E-09 2.371E-08

0.000000000
-0.078449434
4.1319E-03

-
W

383668
368125

1.2262E-02

2.1174E-05
1.019

3.1978E-03

-4.265E-05
-1.226E~07
-6.57%E-06
~4.897E-06

uo*yo

9.6325E-08
6.6639E-09
9.0640E-08

7.3773E-09 1.0709E-07 4.0524E-09

1.230E-07
8.749E-09
1.252E-07
5.435E-09

5.5537E-02

2.1419E-02
12.10
1.019

-2.580E-04
3.967E-05
3.989E-04

-4.775E-05

uo*vo

9.4605E~07
7.4240E-08
1.0662E-06
4.2147E-08

1.142E-06
9.210E-08
1.196E-06
3.811E-08

Xo

uo

yo

- — — — — — —

Vo

~2.906E~06 -6.720E-06
-1.332E-08 4.975E-06

1.477E-06 6.248E-05
2.395E-07 2.762E-06

yo**2 yo*vo

et St Ve b aed et bk

4.059E-09 1.340E-07

3.665E-10 1.234E-08
4.913E-09 1.589E-07

1.414E-10 2.354E-09

~-6.680E-04
2.717E~05
1.898E-04
-1.467E-05

vo**2

1.754E-07
1.197E-08
8.938E-08
5.565E-09

Figure 3. First and second order matrices for the helical snake at Y= 27 (injection)
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Figure 4. First and second order matrices for the helical snake at y= 268 (storage)
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the snake. The initial conditions, typically 50 to 100, are tracked through the snake with SNIG
and a polynomial fit of the dependence of final from initial conditions is performed. That allows
one to derive first and second order transverse matrices, as well as the statistical errors associated.
A typical result for the present snake design at injection (y=27) is listed in Figure 3.

The dependence of the numerical matrix on input parameters, as number of particles tracked,
shape and size of the initial ellipse, random seed, offset of the ellipse center (closed orbit at the
snake entrance), and energy has been systematically checked. The fit results proved to be insensi-
tive (variation of matrix terms < 1%) to most of tthe parameters varied, with the exception of the
ellipse offset and energy. However, in order to have appreciable effects on the matrix (>>1%) the
ellipse center offset has to be ~3cm, an unrealistic value for the closed orbit at the entrance of the
snake in a corrected machine. The matrix obviously changes with energy. Results for the design
snake at storage energy (y=268) are listed in Figure 4. At higher vy the diagonal terms are ~1, the
length ~12m and focusing and coupling terms of the linear matrix as expected decrease with
energy.

3.2 The truncated Taylor map approach (PAC++)

A method has recently been developed [3] that allows the computation of arbitrary order trun-
cated Taylor maps for non-standard accelerator elements such as a helical field. The method uses
a Runge-Kutta integrator for the magnetic field in the framework of the general purpose PAC++
Differential Algebra package which calculates the Taylor map of the element to the desired order.
The representation used for the helical dipole field is described in [10] and the map extraction pro-
gram (HELIX) is accessible in the public area of the RHIC Unix Domain[11].

If we limit the map to second order we can directly compare the map result to the matrices
obtained numerically by SNIG. The model for the fringe fields is different in the present imple-
mentation of SNIG and the map package. SNIG assumes a helical fringe field which decays longi-
tudinally over a distance equal to half of the dipole aperture, while the PAC++ map approximates
the fringe field with thin multipoles at the entrance and exit of the helical module. A comparison
between SNIG and PAC++ for one helical module where the fringe fields are set to zero in both
cases (see Figure 5) shows excellent agreement between the two approaches.

The truncated Taylor map technique allows furthermore an evaluation of snake and rotator effects
to higher orders, and opens the possibility to describe helical fields (or other non standard ele-
ments) in TEAPOT and other general purpose codes.

3.3 Analytical approach

It is possible to derive a first order transfer matrix for 1 module of the helical snake by expanding
around the reference helical orbit, approximating the helical dipole field and simplifying the equa-
tions of motion by averaging sin-like and cosine-like terms. For a detailed discussion of the deri-
vation see [3].

I will only repeat here the final form of the matrix, for a helical field where L = A = 2n/k, with A
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Figure 5. Comparison of SNIG matrices
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and k respectively wave length and wave number of the helix.

[ sin! 7\.0L ) 1
cos(koL) xo 0 0
cos (6L) 0 —sin (8L) 0 .
0 cos(SL) O  -sin(dL) -hsin(A,L) cos(A L) 0 0
sin«(6L) 0 cos (8L) 0 sin! XOL )
0  sin(SL) 0 cos (8L) 0 0 COS(KOL) )
0
I 0 0 —?»0 sin(?uoL) cos(?»ol,)

where & = 1/{ 2kp%) 4, = e’ +8° where ¢* = 1/(20” | and p = (Bp) /B,

For the snake design at the injection 7y of 27 the matrices for the 1.458 T and the 4 T modules are
respectively :

M1 M4

0.9996 2.3996 -0.00014 —-0.00033 09967 2.397 -0.00102 -0.00247
—0.00035 0.9996 0.00000 -0.00014 -0.00269 0.9967 0.000002 —-0.00102
0.00014 0.00033 0.9996 2.3996 0.00102 0.00247 0.9967  2.397
—0.00000 0.00014 —0.00035 0.9996 | —0.000002 0.00102 -0.00269 0.9967

module B,=1.458 T module B,=4T

The matrix for the full snake can be obtained by matrix multiplication of the modules M; and My,
separated by a drift matrix D of 0.32m, the design distance between modules, i.e.:

T=MQO®DOM,®DOM,®D M,
The resulting snake matrix X at?y= 27 is:

0.9659 10.7248 -0.00225 —0.02500
-0.00606 0.9679 0.000014 —0.00225
0.00225 0.02500 0.9659 10.7248
—-0.000014 0.00225 --0.00606 0.9679



4. The one turn map

The model to obtain a linear representation of the ring (1-turn map) is simply to place the snakes
and rotators in their lattice position, project snakes and rotators and connect their respective ring
locations by a phase space rotation: the 1-turn matrix T is obtained by multiplication of the matri-
ces representing these operations (See Figure 6).

Figure 6. Model for the 1-turn matrix

Y, : snake matrix
P: rotator matrix

Rij : phase space rotation
from pointitoj

o=L1%3
x=L1*P

T=R61*C*R56*1C*R45*7t*R34*7'C*R23*15*R12*0'

The phase space rotation between point i and j is given by:

X
R} 0
0 R,
where
B, - .
E(cosZnu‘.j+a‘.sm nuij) /ﬂ‘.[}jsm2nuij
3

Y 1+oo; o, -0 B, )
—_— sm21tu,.j + ——cos21cp.‘.j E (cos2nui}-— ajsm21tu,.j)

J
As described in more detail in [1], it is possible to derive from the 1-turn matrix T the linear cou-
pling effect, quantified by the distance of minimum approach of tunes (AQpip) in the following




o

o

M

way. By writing the 4x4 matrix T as [ m] , one can demonstrate that:

n N

2 1 2
[cos (27Q,) — cos (210p)1° = [iTr(M—N)] +detH

where H=m + n* and A and B are the eigenmatrices and Q, and Qg the eigentunes of the cou-
pled motion. In the particular case when Q = Qy = Q, (fractional tunes) one can demonstrate that
the minimum tune separation is:

1 JdetH

AQmin = Smsin (270,)

The program that implements the above calculations for the RHIC lattice [12] is available in the
Public Area of the RHIC Unix Domain.

5. Results and discussion

When only the 2 Siberian snakes are present in the lattice (tuned at Q,=28.185, Q,=29.185) the
results for the linear model at injection are summarized in Table 1.

Table 1: Coupling introduced by 2 snakes in the ring (linear models)

model AQuin
| x=====

2 snakes ( analytical snake matrices ) 0.00157

2 snakes ( numerical ‘SNIG’ matrices ) 0.00289

The first row in Table 1 gives the linear coupling for 2 snakes in the ring, represented by analyti-
cal matrices as described in section 3.3. In the second the matrices for the 2 snakes are obtained
numerically (see section 3.1). The predictions from the analytical and numerical model are in
within a factor 2: it is worth recalling that the approximations used and the fringe field models are
different in the 2 cases, so perfect agreement was not expected.

The results concerning the analytical model have been independently verified [13] by inserting
the analytical snake matrices in the RHIC lattice and using the code SYNCH to calculate AQunin-

The results in this case are in within 1% agreement with the results obtained with the 1-turn

matrix model.
Table 2 describes the resulting coupling when we add 4 spin rotators to the 2 snakes in the ring at



injection energy ( both rotators and snakes described by numerical ‘SNIG’ matrices ).

Table 2:
model AQnin
2 snakes + 4 rotators (with fringe fields) 0.00383

The rotators do not add an appreciable amount of linear coupling to the machine; the fringe fields,
as already noticed, are important as far as rotator design and performance evaluation are con-
cerned.

For all the models and configuration studied, however, the resulting linear coupling (AQmin< 102
at injection is well within the range of capability of the RHIC decoupling system. At storage, the
coupling introduced by the snakes is negligible (AQm;n < 1074).

Work is in progress to evaluate the higher order effects of the snake on the beam dynamics, and
the non-linear behavior will have to be compared to the linear effects.
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