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ORBIT MATRICES FOR HELICAL SNAKES
E. D. Courant

November 8, 1994

Helical snakes may be useful for preventing spin resonances in RHIC
and the Tevatron. We must evaluate the impact they may have on orbit stability.

Blewett and Chasman! show that in a helical snake the fields are, up
to terms quadratic in the displacements from the axis,

k? k?
By = —Bo{[1+ —8-(31:2‘-1— y?)]sin kz — [ 2y cos kz}

k2 k?
By = Be{[1 + —8—(2:2 +3y°%)] coskz — Z:cysin kz} €]
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B, = —kBo(z coskz + ysin k2)[1 + %(1:2 +3%)]

where k = 27 /) is the wave number of the helical field, B, its value on the axis,
and = and y the displacements from the axis, 2 being the distance along the
longitudinal axis. This is in agreement with the field expressions obtained by
Ptitsin 2.

The equations of motion for z and y are (to lowest order in z and y and
their derivatives)

z" = (y'B: ~ By)/Bp

(2
¥ =(B:—2'B,)/Bp
A solution of these equations is the helical trajectory
2o = rgcos kz
()

Yo = rosinkz

1J. P. Blewett and R. Chasman, J. App Phys. 48,2692 — 2698(1977)
2V. Ptitsin, Note RHIC/AP/41(Oct. 10,1994)
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where

1
=, (4)

is the radius of the helical orbit centered on the axis, and p = Bp/Bo is the

o

radius of curvature of the particle in a field Bo.

We may describe the actual motion of the particle as an oscillation
about (3). Note that, if the helix is centered on the central orbit z = y = 0, the
actual orbit will, in fact, not be the helical orbit (3) but an oscillation about it,
with an amplitude of the order of rg.

Using the fields (1), putting £ = zo +§ and y = 3o + 7, linearizing in
¢ and 7, and neglecting terms of the order (ro/p)? = 1/(kp)*, we obtain the
equations

, 1 3 3 . 1
¢ = — 27 (1 + ok 2k2)¢ — Z7sin 2kz] — k—pf"l (5a)
1 3 3. 1
N = ——2?[(1 — 5 ¢os 2kz)n — §E sin 2kz] + v ¢ (50)

Caution : the linear equations (5) are valid only in the immediate vicinity of the

helical trajectory (3). Nonlinear terms in £ and 7 in the fields B, and By will
be of the order (k€)% By, while the terms linear in § and 5 are of the order &rg.
Since the displacements from the helix are in fact just of the order of magnitude
of ro, this means that the nonlinear terms are of the same order as the linear
restoring forces, and therefore the results obtained below may be expected not
to be very accurate. Nevertheless they should at least give a rough indication
of the orbit-dynamical effect of the helix.

In RHIC (and most other applications) the length of the helix will be
small compared to the radius p; therefore it should be a good approximation
(equivalent to the thin lens approximation) to average the trigonometric func-
tions in the coefficients in (5). Furthermore, if the length of the helix is a whole
wavelength (360 degree twist) the trigonometric functions average to zero, and
kzsin kz averages to 1. We shall assume this to be the case, so that (5) simplifies
to

& = —e’ — 280 (6a)

7 = —eln+ 26¢ (6b)

where
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We look for a solution of the form
E _ aeiz\z; n= beiAz. (8)

Substituting in (6) we find the determinantal equation

€ —22  26xi .
—96xi 22—z |F(E€ =242 (9)

the solutions of which are

M=VE+8 46 h=\/216 —3§ (10)

It may now be seen that the quantities
u =Mt + 7 (11a)

v=dg+¢ (115)

perform uncoupled harmonic oscillations, i.e.

u+ Mu= 05" 4+ A2v = 0. (12)
We can write (11) in matrix form. The transformation between u,u’, v, v’ and

&E 1 s

As 1
u=DED = A =Aidy (13)
—)\1 /\Q A2

the inverse of which is



1 =1/
1 1 Az
20 —1/2 1
A 1

Note A Az = €2; we define Ag = Ve2 + 82 = (A1 + A2)/2.

(14)

To obtain the transfer matrix for the whole helix, we also have to take
account of the end effects. If we assume the field of the helix steps abruptly
from zero to the expressions (1) at z = z; and back to zero at z, we have to
add delta-function singularities to satisfy Maxwell’s equations at the ends.

If the fields (1) jump abruptly from zero at the beginning of the helix
and back down at the end, one has to add delta function singularities at the
ends. We note that the longitudinal field (1c) can be written

B, = —kBo(ro + & cos kz + 1sin k2)S(z) (15)
where S(z) is the step function jumping from 0 to 1 at z; and back to zero at

z5. The Maxwell equation V - B = 0 then requires that we add terms
AB; = kBo—g-(ro + Ecoskz)[8(z — z1) — 8(z — 22)] (16a)

ABy = kBog(ro + nsin k2)[8(z — z1) — 8(z — 22)] (16d)
which leads, by (5), to jumps in £’ and 7 at the entrance and the exit: At the

entrance

Al =—6-n,A1 =8-&; (17)

at the exit the jumps are reversed.

Thus the matrices D and D~!(egs. 12 and 13) have to be modified:

Az 1 1 o
Mo—Ahe 1 -5 M —dods
1 M 1 1 o
—MA2 X 5 1 Aoz
(18)

Az




1 -1/,
D= 1 Xo/A1 Ao
20 -1/A1

Ao Ao/ A2

We now construct a transfer matrix for the whole helix, using the matrices (18)

(19)

and (19), and the standard 2 x 2 matrix transformations for the uncoupled
variables u and v. We assume the length of the helix is L = 2#/k. The matrix
for the whole helix is

(&3] 31/7\1 ~

—Ai1s c ‘

.| 151 1 D

M=D e sa/h (20a)
—/\282 [+5}

c1+ e (s1+s2)/ 0 S — 81 (c1—c2)/ Ao

_ 11 —Xo(s1+52) e ) —Ao(e1 —e2) S$3— 851 (200)
2 5y — 89 (ca—e1)/ Ao c1+c (s1 +52)/ A0
—Xo(ez — ¢1) 81 — 82 —Xo(s1 + s3) c1+ ¢
s —55 co  So/Xo
_ C§ —S8§ —Aosio Co
1 ss cs co  sofXo (20¢)
8§ Cs . —A()So Co

Here g, €1, €2, ¢5 stand for cos AgL, cos A1 L, cos Ay L, cos 6L, and similarly for sy

etc.

In RHIC, it is proposed to install two snakes in each ring, in the straight
sections between magnets Q7 and @8 upstream of the 2 o’clock and 8 o’clock
intersection point. Each snake consists of four 360° helices. The helix modules
are all 2.4 m long, with fields of approximately 4T in two of the modules and
1.5T in the other two. With the RHIC linjection energy of ¥ = 27 we then have

Bp = 84T — m; p = 2Im; k = 27/2.4 = 2.62m™!
so that kp = 55;rp = 6.95mm
and neglecting terms of the order (kr)? = .0003 is justifiable.

An addition has been incorporated in the SYNCH orbit program to
define an element type “HELIX”, characterized by length, twist angle, field,
field orientation, and magnetic rigidity. (The same can, of course, be done in
MAD or TEAPOT or other dynamics programs). Matrices are computed by



eqs. (20), and included in beam lines for a storage ring. Doing this for RHIC at
v = 27 we find shifts in the tunes, as well as coupling between the two transverse
modes. A run with the lattice at S = 10 m gives

No snakes: v, = 28.196999; v, = 29.192962

snakes:

v =27 : v, = 28.221027; v, = 29.216518; | Avmin |= 00143

v = 268 : v, = 28.197254; 1y = 29.193220; | AVmin |= .000017.
Here | AVmin | is obtained from the off-diagonal submatrices of the 4 X 4 matrix

of the whole ring. Following Edwards and Teng * and Peggs* we have

| AUpin |= /Det(m +nt) /27 (21)
where m and n are the off-diagonal submatrices of the 4z4 matrix, and nt is

the symplectic conjugate of n.

We see that the tune shift is of the order of .025 units at injection
energy, while the coupling due to the snakes is no larger than the coupling one
may expect from ordinary orbit errors. Both the tune shift and the coupling
decrease with the square of the energy, so that they are minuscule at storage
energy.

Numerical results by Luccio, using numerical integration in his program
SNIG?®, give matrices comparable to those of the matrix (20c). His coupling
strengths are of the same order of magnitude as obtained here. The main result
is firm: A pair of helical snakes have a modest (though not entirely negligible)
effect on the orbit dynamics of the ring, and small tune corrections are probably
desirable.

I have benefited from discussions with A. Luccio, F. Pilat, and V. Ptitsin.

3D. Edwards and L. Teng, IEEE Trans. Nucl Sci NS-20, No. 3,1973
4 S. Peggs, Ibid.,, NS—30, No. 4,1983
5 A. Luccio, private communication




