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OPTIMIZATION OF SPIN ANGLES FROM A HELIX FIELD MAP *

ALFREDO U. LUCCIO t
RIKEN Institute, Wako, Saitama, 351-01, Japan

1. Orbit and spin angles in Siberian snakes and spin rotators

Four-helix Siberian snakes for RHIC should be able to rotate the proton spin by
180°. The precession axis should be in the horizontal plane, forming an angle of £45°
with the longitudinal z direction. The particle trajectory should be compensated, i.e.
a proton entering the snake on axis at zero angle should emerge from the snake still
on axis and at zero angle. So, many conditions have to be fulfilled at all energies of
the beam between, say 25 and 300 GeV.

In a snake, we have seven quantities to optimize. 4, for the orbit, the horizontal
and vertical displacement and angle. 3, for the spin, the spin flipping angle y, and
two angles defining the direction of the precession axis, the latitude 6 between the
axis and the horizontal plane, and the azimuth ¢, formed by the projection of the
axis on the horizontal plane and z. If there are no trim coils in the helical magnets,
we can only count on two parameters to adjust seven quantities, i.e. the field in the
outer and inner helix pair, By and Bs. ‘

The orbit in a 4-helix Siberian snake is in good shape, since the field components,
including fringe fields, are naturally compensated if the helices are pairwise identical 1.
Then, in principle, we are only left with three quantities, the spin angles, and two
parameters to correct them. The symmetry properties of a 4-helix structure make
0 = 0. So, with two values of the field and a perfect structure, we can always find
good values of the angles (y, 8, ¢) close to the values (180°,0°, £:45°).

For a 4-helix spin rotator the situation is worse, since the rotator orbit is not natu-
rally compensated. However, symmetry considerations, if the helices are all identical
and perfect, show that we can do the trick with 4 parameters, two field values and
two injection angles.

In previous work we integrated the motion and spin equations with the code
Snig 1, using for the field the Blewett and Chasman (BC) analytical expression ?,
with a plausible, quasi Maxwell-ian fringe field. We could find good values of the
spin angles. Now, we repeated the calculation using the map of a realistic magnetic
field 3, made with a numerical 3-D magnetic code *.

2. The field map

The field map used in the present calculation is for the slotted type helical magnet
prototype presently being constructed at Brookhaven °. Because of saturation in the
iron, high field maps and low field maps have been prepared. They are not identical
but, since the differences are small, for the present work we have used only the high
field map, that we will call OH. Snakes and rotators are made of 4 helices, all identical

*Work performed under the RIKEN Eminent Scientist Invitation Program
tPermanent address: Brookhaven National Laboratory, Upton, NY 11973-5000, USA
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Figure 1: OH map field vs. BC field. On axis.

in length (2.4 m), and only differing for the right- or left- chirality. Map values were
first normalized with respect to the maximum value on axis and then multiplied by
the “nominal” field.

A comparison of the field in the map with the Blewett-Chasman field shows a
significant difference near the end region of the helical magnet. As Fig. 1 shows, the
field of the “real” OH magnet leaks out more than the BC. Consequently, the OH
field integrals are smaller.

3. Integration and optimization in a field map

For the calculation of the orbit and of the spin motion we used Snig. The integrator
in the code is almost symplectic, but since the field of the map is not perfectly
Maxwell-ian anyway é, the non perfect symplecticity is irrelevant. Moreover, in a
single pass calculation the symplectic nature of the integration is not an issue.

3.1. Stberian snakes
The best angles were found by minimization of the function
=A%+ A%
with the following orbit and spin terms

A% = (z — 29)? + (pr — Pz0)® + (¥ = ¥0)* + (Py — Pyo)?
Af=(p—7)+0°+ (F 7/4)’

2
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Figure 2: Snake field vs. proton energy for best angles. OH map.

The minimization routine is the “conjugate direction method”, or Powell method of

the Numerical Recipes 7. The results are shown in Fig. 2. A similar optimization &

using first order matrices based on the BC field ® produced qualitatively similar
results, shown in Fig. 3. The variation of the field vs. beam energy is due to the “1”
in the numerator of

(1+ Gv)By

Bp.

where By is the nominal field. The field appears in the theoretical expressions for the
spin matrix elements to first order only through the quantity w. The field values that
make w = const are shown as a solid line in Fig. 3. Note that the optimized fields
from field maps are & 4% higher than for BC, due to the faster fall-off of the field.

The optimized field values for a field map vs. energy are shown in Table I
Field values are in Tesla, angles in degrees. The table gives other parameters for
the optimized snakes, for all energies, namely the maximum orbit excursion, and the
orbit lengthening in the snake, in mm.

Fig. 4 shows the maximum orbit deformation, for a particle injected on axis, vs.
~. The figure shows also the orbit lengthening with respect to the device length.

Figs. 5, 6, and 7 show the magnetic field components, the orbit components and
the spin components for the snake at v = 25, respectively.

3.2. Spin rotators

Spin rotators compared to snakes have the additional problem that the orbit is
not naturally compensated. A solution was given for a BC rotator by reducing the
angle of rotation of the helix from the nominal value of 360° to 345° 1. The structure
represented by the OH map was designed to produce an “equivalent” 340° rotation as
well as possible. We expected that injection angles different from zero were needed.

3% 2
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Figure 3: Snake field for best angles. OH fieldmap vs. Blewett/Chasman field.

Table I: Optimized parameters for snake based on a OH map.

~ Bl B2 Tmax Ymaz oL
25 1.28932 4.03397 15.430 32.495 2.065
30 1.28832 4.03864 12.749 27.078 1.435
40 1.28795 4.04294 9.489 20.299 0.808
50 1.28775 4.04491 7.562 16.237 0.517
75 1.28751 4.04683 5.034 10.824 0.230
100 1.28740 4.04749 3.782 8.117 0.129
125 1.28734 4.04780 3.028 6.493 0.083
150 1.28731 4.04796 2.524 5.411 0.058
175 1.28728 4.04806 2.164 4.637 0.042
200 1.28725 4.04814 1.894 4.058 0.032
225 1.28724 4.04817 1.684 3.607 0.026
250 1.28722 4.04820 1.515 3.246 0.021
275 1.28722 4.04822 1.378 2951 0.017
300 1.28722 4.04824 1.263 2.705 0.014
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Figure 4: Snake orbit maxima and orbit lengthening x10. OH fieldmap.

| SNAKE  OHFmepy=2s B
4L J
2t ]
)
g 0
[sa]
-2k 4
-4 F i
0 2 4 6 8 10 12

z[m]
AUL8102208

Figure 5: Snake magnetic field components. 4 = 25. OH fieldmap.
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Figure 7: Snake spin components. v = 25. OH fieldmap.
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Figure 8: Rotator field vs. proton energy for best angles. OH map.

The spin flip angle for a rotator is ¢ = 90°. The final spin orientation should be
in the horizontal plane at an angle with z strongly depending on energy, because the
section of RHIC where the rotators are inserted is at some angle ¢* = 3.674 mrad
with the direction of the adjacent interaction straight '°. Accordingly, the angle for
the spin direction at rotator’s exit should be Gvy¢*.

Figs. 8 and 9 show the field needed to flip the spin from the vertical to the hori-
zontal, with the appropriate angle Gv¢*. The field is on the average 5% higher than
for the corresponding spin rotator calculated from the BC model 1. The optimization
was done as for the snakes, by minimization of some quadratic expression. Table II
shows the values of the field in the rotator helices, the value of Gy¢*, in degrees for
each beam energy, and the required injection angles to produce a balanced orbit. The
table shows also the maximum orbit excursion and the orbit lengthening, in mm.

Fig. 10 shows the maximum orbit distortion vs. 4 for a spin rotator. The same
figure shows also the orbit lengthening. Fig. 11 shows the injection angle needed to
produce a balanced orbit, due to the non perfect compensation of the field integrals.
The small non-zero horizontal injection angle is due to map errors. Fig. 12 shows the
(absolute) field integral along the orbit needed to obtain the appropriate values of the
angles p and Gv¢* at all energies. Because of the variation of the latter angle, the
transverse field integrals increase with beam energy. The integral of the longitudinal
component of the field decreases with the energy, since at higher energies the beam
feels less and less a longitudinal field (this field is zero on axis). ‘

The spin rotator field components at ¥ = 250 and the spin components at two
energies are shown in Figs. 13, 14, and 15, respectively. Note the final values of the
z vs, z components of the spin at 4 = 25 vs. v = 250 needed to produce the required

w £
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" Figure 9: Rotator field vs. proton energy for best angles. Same data as in figure 8.

OH map.

Table II: Optimized parameters for spin rotator based on a OH map.

v G7¢* Bl B2 Tmez Ymaz 5L
25 9.435 2.09136 2.75730 24.598 9.677 1.376
30 11.322 2.14865 2.73350 21.059 8.018 0.964
40 15.096 2.26009 2.68289 16.613 5.912 0.552
50 18.870 2.36950 2.63263 13.932 4.643 0.360
75 28.304 2.63169 2.52116 10.316 3.185 0.169
100 37.739 2.86892 2.44692 8.434 2.611 0.102
125 47,174 3.06702 2.43263 7.213 2.236 0.070
150 56.609 3.21818 2.48920 6.307 1.956 0.053
175  66.044 3.32668 2.60530 5.589 1.733 0.042
200 75.479 3.40319 2.75782 5.003 1.551 0.034
225 84.913 3.45782 2.92831 4.518 1.400 0.029
250 94.348 3.49755 3.10555 4.109 1.479 0.025
275 103.783 3.52719 3.28370 3.767 1.360 0.022
ﬂ 300 113.218 3.54935 3.46052 3.475 1.258 0.020
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Figure 10: Rotator maximum orbit and lengthening for best angles." OH map.
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Figure 11: Rotator injection orbit angles. OH map.
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Figure 12: Rotator field integrals. OH map.

Gy¢* values.

4. Conclusion

The field integrals for a 4-helix snake or spin rotator calculated from a field map
(slotted type construction) are smaller than for a Blewett-Chasman model with the
same nominal field. Consequently, to obtain the appropriate spin flipping angles and
axis angles, the field should be slightly raised (up to 4-5 %). These values are well
within the tolerance margin of the magnet prototypes currently being fabricated at

Brookhaven.
For a rotator, the field integrals of the map calculated along the orbit are not

exactly compensated. This may require some trim coil capability in order to inject
particles parallel to the rotator axis.

10
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Figure 13: Rotator field at v = 250. OH map.
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Figure 14: Rotator spin components at 4 = 25. OH map.
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Figure 15: Rotator spin components at v = 250. OH map.
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