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FIELD MAP GENERATED MATRICES FOR SPIN TRACKING *~

ALFREDO U. LUCCIO 1
RIKEN Inslitute, Wako, Saitama, 351-01, Japan

1. Introduction

Spin tracking in RHIC tries to answer the very basic question whether the spin
polarization of the proton will be conserved up to the highest energies with the help
of Siberian snakes. In a first stage of the numerical tracking, an analytical expression
for the orbit and spin matrices in the snakes was used. We are now moving to the
use of matrices calculated by a more realistic description of the magnetic field in the
snakes. This task presents several problems, both for orbit and for spin matrices. We
are proceeding in successive steps of approximation. Let us discuss what the steps
are and what we expect to accomplish.

The limits of this study are the following. For the orbit we will use a zero order
matrix. That is, the coeflicients of the transformation of the spatial phase space co-
ordinates will be constants, independent of the position and angle, in six dimensions,
of the particle. Ior the spin, instead, we will use in the snakes 3 x 3 matrices whose
elements are a function of the particle position. Spin motion will be then treated to
first order, but it will couple with the orbital motion.

Spin matrix elements dependence on the orbit is particularly important at the
highest limit of the energy in RIIIC, since there spin resonances are strong and over-
lapping and the capability of the snakes to preserve proton polarization is limited.
This in turn presents us with two main problems, on the optimization of the spin
matrices and of the orbit matrices for the snakes.

=> Numerical spin matrices should be unitary, since they represent a rotation in
spin space, but also they should provide the required rotation of the spin and the
correct angle of the precession axis. To achieve that, the snake magnetic field should
be varied along the acceleration cycle. Then, spin matrix elements are also a function
of the energy. ‘

=> Orbit matrices should be symplectic, essentially to preserve beam emittance,
among other motion integrals. If the emittance blows up during tracking, particles
will end up on the average on large radii, and then the spin matrices will show an
incorrect rotation of the spin. Since in spin tracking a large number of revolution
should be simulated, we can only tolerate a small error in symplecticity.

In the following we show how to generate from a magnetic field map consistent
spin and orbit matrices, to be used in spin tracking

2. Use of Field Maps

Our spin tracking program Spink ! makes use of two type of matrices: 6 x 6 Orbit
matrices (T), and 3 x 3 spin matrices (S). In RIIIC, snakes and spin rotators are made
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Figure 1: Snake ficld. BC vs MO. On axis.

with four helices 2.

In an earlier use of the analytical representation of the snake field given by Blewett-
Chasman (BC) 3, explicit expressions for T matrices * and S matrices ® had been calcu-
lated to first order in the field. For a better representation of the real snakes/rotators,
the analytical formulation is not sufficiently accurate, and the BC field should be re-
placed by a field map calculated by some three dimensional magnetic field calculation T
or measured. A map of the field of the slotted-type helix presently being constructed
at Brookhaven & was calculated on a (,y,s) mesh ®. The results presented in this
note are based on this map (MO map),

We first compared the field on the MO map with the BC field used in earlier
version of Spink and in the oplimization of the snakes/rotators . Tigures 1 and 2
show the results of the comparison. It is apparent from the figures that the field
integral of the MO field is somewhat smaller than for the BC field, for the same
nominal (maximum) field, because the magnetic component that has a maximum
close to the magnet’s end is smaller due to the fall-off of the field towards the outside.

The integration of the equation of motion and of the spin (BMT) equation in the
MO map has shown that the appropriate rotation of the spin in a snake, 180°, and
the correct angle of the precession axis, 45, is obtained with a substantially higher
peak field (1.290 and 4.185 tesla, in the outer and inner helices respectively, vs. 1.191
and 3.864 tesla for the BC field, at a beam energy v = 27). This is a reason for
concern and points out how important it is to switch to a correct characterization of
the snakes/rotators, by using maps and not an analytical representation of the field.

A second task was to include in the S matrices effects due to the betatron motion,
that according to some calculations !! seem to reduce the snake power especially at
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Figure 2: Snake field. BC vs MO. Off axis.

high energy in RHIC. Betatron motion aflects S matrices because the local field on
the particle orbits is slightly different than the nominal field at which the matrices
can be optimized. Then, the elements of the S matrices for a snake should be made a
function of the particle transverse position, similarly to what happens in other lattice
devices, like quadrupoles. Analytical (Syphers) matrices already include this effect,
since their elements are a function of the (local) magnetic ficld, that can be derived
from the BC expressions. Now, we want to include the effect in matrices calculated
from a magnetic field map.

T matrices should also contain effects due to the field calculated on the orbit.
Analytical (Courant) orbit matrices contain this dependence, since their elements are
expressed in terms of the (local) orbit curvature, proportional to the local magnetic
field. For T matrices we also want to use an expression calculated from a magnetic

field map.

3. Spin Matrix Calculation From a Field Map

To calculate a S matrix from the MO map we used the integrator Snig '°. The
field was mapped on a cartesian grid with 5 mm step in the transverse (x,y), and 10
mm step in the longitudinal z direction. The interpolation in the field was done with
a cubic polynomial in 3 dimensions on a mesh of 3 field points. Calculations were
done in double precision. The map was used four times, for the four helices of the
snake, with the appropriate orientation of the field at each helix entrance. .

Three representative particles were injected in the field, with initial spin § =
(1,0,0),(0,1,0) and (0,0,1), respectively. With this initialization, the final values
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Figure 3: Snake S matrix coefficients vs. . MO map. v = 27

of the three components of the spin give directly the elements of the S matrix. To
study the dependence of the matrix elements from the particle position and angle,

the calculation was repeated for different values of X = (x,2',y,y"). The determinant

of each matrix, for different points X, resulted very close to one with an error of the
order of 10714,

The values of the matrix elements for the snake, 1 to 9 row-wise, as a function
of (z,2’,y,y") are shown in figures 3, 4, 5, and 6, respectively. They appear rather
smooth up to large values of @ and y that correspond to orbits actually reaching
the outer edges of the field map, and represent unrealistic large betatron oscillations
in RHIC. We performed a quadratic polynomial x? fit of the matrix elements vs.
the components of X. Figures 7, 8, 9, and 10 show the result of the fit, and the
corresponding values of the matrix determinant ervor (det(S) — 1). The determinant
error was always less than 107%. Iinally, we combined our_‘results in a quadratic
expansion of the spin matrix elements in all components of X. No cross terms were
included in the expansion. Fitting routines came from the Numerical Recipes 2.

The resulting 9 x 5 X 2 numbers that characterize a spin matrix for a MO map
of the snake are shown in Table I. The table gives the coefficients of the following
expression for each of the matrix elements, 1 to 9, arranged row-wise

a=a+Ar+Ba'+Cy+Dy + E2?+ Fa”+Gy*+ Hy"? (1)

We checked the expression and the numbers, by calculating the matrix on a large

4 x 4 mesh of X points. The determinant maximum error over the mesh resulted of
the order of 107°.
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Figure 5: Snake S matrix coefficients vs. y. MO map.
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Figure 7: Snake S matrix coefficients vs. z. Quadratic fit.
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Table I: Snake S Matrix. Coeflicients of the expansion in (x,2’,y,y’).

ag

A

B

C

D

4.35162079850
-0.490790835740
-0.253245262471

0.366648436509
-2.342376033373E-2
0.321660792845
-0.249597986451
-0.195767578472

0.811944208831
-4.525811813585E-2
-4.5430676535538E- 2
4.846007606141E-2
-2.216440119416E-3
1.407227377854E-2
-4.567401192705E-2
-1.836433192659E-2

1.816052022496E-3
9.77198654807415-2
3.36035896330812-3
9.823043608331F-2
-2.119156011162E-5
-0.103344099216
-3.565845902588E-3

-1.89495956849
1.24911320560
0.1.14291475643
-9.547229506081 E-2
4.158788181623E-2
-1.18232407037
0.10:4838207564
-3.779-193119458E-2

-5.4130701775829029E-2
3.5405617524792550E-2
-0.9979056574833112
-3.5367726899755189E-2
-0.9988107748848698
-3.3527622605374612E-2
-0.9979073058766534

3.3518332775825485E-2
5.5319051041207323E-2

9

-0.103843330131

-1.778565792294E-3

E
7.49874342184
-8.59619188986
-0.705485225718
8.56693476956
-0.557101922817
7.87715154291
-0.704252483781
-7.86300110507
-8.07080440953

1.93523382914
F
254.296215912
-437.720837433
-26.1058528541
210.884397321
-20.5128387403
417.871816144
-19.2741745797
-182.580251919
-277.079651666

-0.812776774999
G
6.21405438357
-4.01090495982
-0.173881822919
4.29413521716
-0.271080679991
3.84644588563
-0.155576224717
-3.88526513592
-6.81824485907

-4.37231011746
H
-54.3392714027
~398.090585500
-1.51033866261
64.0535181173
-15.2650066526
399.781046205
10.2193866972
-46.5634105139
37.3891140337
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Figure 11: Snake S matrix coeflicients vs. v. MO map

For optimum performance, the magnetic field in the snake should be adjusted with
proton beam energy. In Syphers formulation this is described through a parameter
of the S matrix elements, function of the nominal field By in one of the helices *

"= (14 Gv)Bo

=35,

w should remain constant at all Gy in spite of the "1” in the numerator, that breaks
the linearity of response ©.

The optimization of the snake field -lor a field map- vs. Gy has not been done
yet. To emphasize the magnitude of the task, we should also recall that, because of
saturation effects in the iron, field maps at high field are not identical to maps at
low fields. The present calculations were performed by using a high field map, even
for low field magnets, and using a field optimized for an intermediate value of G7.
A reasonable approach, at this stage of the analysis, is to parametrize the S matrix
elements vs. beam energy. Accordingly, the calculation was repeated at energies
corresponding to v = 25 to 250. The result is shown in Fig. 11. A fitting, Fig. 12,
using an expansion on base s = exp (—y + 7o) '

(2)

a=a+A+Bs+Cs® (3)

produced the coefficients shown in Table II

4. Orbit Matrices From a MO Map

T (orbit) matrices have been calculated from a MO map with Snig. A similar
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Table II: Spin Matrices. Coefficients of the expansion in 7.

A B C
-6.642262684823E-3  2.689980719292E-3  3.706262987863E-3
4.448885965510E-4  -2.045166829963E-4  -2.256712197148E-4
-5.474359697490E-3  2.063815607736E-3  3.196530678736E-3
1.519896872518E-3  -8.310745332888E-4 -6.451036179242E-4
5.486581376952E-3  -2.090689651571E-3  -3.187264413617E-3
2.102177829034E-2  -8.816701580694E-3 -1.142642308771E-2



calculation and a trasformation up to third order has been already presented for a
snake based on the BC field 3.

To calculate a T matrix, the technique was to track a certain number of particles by
integration of the orbit equation. Particle initial coordinates were chosen at random
with a gaussian distribution in all the components of X and particle energy. By
solving a system of algebraic equations between the final and the initial coordinates
of the same particles, a transformation expressed as a power expansion truncated
to a pre established degree can be found. At the present stage of spin tracking, we
are interested in a 0.th order 6 x 6 matrix, obtained by solving a system of linear
equations. Since the center of the final beam will not in general coincide with the
center of the initial beam in phase space, a minimum of 6 x 6 + 6 = 42 coefficients
and then of representative particles will be needed. For more reliable results, we are
constantly using a number of particles larger than 42, performing averages on the
resulting matrices. Matrices thus built will represent to lowest order a true thick
accelerator device, including its fringe field.

4.1. Symplectic Matrices

As already pointed out, a physical T matrix should be symplectic, otherwise
the orbital motion is not calculated correctly in tracking. In particular, the beam
emittance will grow. At constant beam energy, with only static magnetic fields, no
space charge effects, and no chromaticity, the emittance and other integrals of the
motions should remain constant. We recall than in a typical spin tracking run, a
particle is followed for a number of turns than can exceed several 10°, and then
even a small error in the orbit symplecticity will cause a non acceptable emittance
growth. The problem of emittance growth due to chromaticity of the helices will not
be discussed here.

The code used, Spink, has been extensively described elsewhere !. It makes use
of an integration routine based on the predictor-corrector Hamming HPC formalism
with adjustable step. The routine starts with a 3.rd order Runge-Kutta, since HPC
is not self-starting. The routine proved in the years to be very robust and quasi-
symplectic. The limits of the sympecticity of the resulting matrices should be mostly
attributed to the non perfect obeyance of the mapped field to Maxwell’s equations.

Let us consider the problem in the transverse phase space (z,y). For a 0.th order
transformation map, this requires that a matrix M satisfies the following condition

(see e.g. )

MTSM =S (4)
where M7 is the transpose of M, and S is the matrix
0 1 0 O
-1 0 0 O
S=1 0 0 0 1 (5)
0 0 -1 0

If Eq. (4) is satisfied, the matrix M corresponds to a rotation in phase space. Con-
dition (4) is equivalent to the following six explicit relations between the matrix
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elements
( (1122) +(3142) -1 =0
(1123) + (3143) =
(1124) + (3144) =0
< (1223) + (3243) = (6)
(1224) + (3244) =
(1324) +(3344) -1 =0
| det(M) -1 =0
with the definition
* (ijkl) = M;; My — M;[Mkj (7)
Note here that
{ det, = (1122) (8)
det, = (3344)

are the determinants of the 2 X 2 sub-matrices corresponding to the z and y planes.

A statistical definition of the transverse emittance of a beam, given the coordinates
of the individual particles in phase space, is the determinant of the covariance matrix
of the variables, position and transverse momentum

<z?> <za'> <zy> <2y >
<z'z> <z%> <a2y> <z'y>
<yz> <yz'> <y:> <yy> (9)
<yr> <yz'> <<y'y> <y?>

¢! = det

where the dispersion of one of the variables is
1
o? = N d(vi- < >)? (10)

and we have assumed in Eq. (9), for compact notation, that the averages, such as
< & > are = 0. If there is no coupling, the four dimension emittance is the product
of the emittances in each transverse plane

€ =¢, X ¢ (11)

The emittance in z is
e = {((z— <z >))(a'— <2’ >)}) = {(z— <z >)(2a'- < 2’ >))? (12)

with a similar expression for €Z.

It can be shown that if the matrix T is symplectic, the total emittance € is con-
served. If there is no coupling and det(7T') = 1, the product ¢, X ¢, is conserved.
Finally, with no coupling and det; = det, = 1, €, and ¢, are individually conserved.

By construction, analytical (Courant) helix matrices have a determinant exactly
of 1 and are symplectic.

Matrices calculated from a field map in general aren’t. This is a problem that
would show up not only in our case, but also in machine optics codes like Mad '3,
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that uses matrices obtained by truncation of some expansion. In Mad, the problem
is solved by a transformation !¢ that turns an approximately symplectic matrix into
an exactly symplectic one. The argument runs as follow. Since a symplectic matrix
M is a rotation, it can always be expressed in terms of a symmetric matrix W

M=(I+W)I-W)" (13)

with I the unitary matrix. We can invert and write W as a function of F. A quasi
symplectic matrix M yields a quasi symmetric W. Then, if we build the perfectly
symmetric

atT

W= (W + W) (14)

we can find the symplectic M using Eq. (13).

A second, direct method is based on the following observation. Since we can trace
some of the problems of the lack of symplecticity to the non exact Maxwellian nature
of the field we are using (see Appendix), and the errors in the div and rot equations
are very small, it would take a very minor correction of the local field to produce
a symplectic (i.e. physical) matrix. Besides, if we would measure the field instead
of reading it from a calculated map, we would incur in measurements errors. The
small modifications to the field values that will bring the field to satisfy Maxwell’s to
high accuracy are conceivably within these potential measuring errors. In conclusion,
we can safely assume that we can doctor a little the orbit matrix, already almost
symplectic, to complete symplect-ification.

The new matrix will be very close to the original, and it will allow us to track
particles for many turns. Our doctoring was done by a numerical minimization by
the Powell algorithm '? of a function consisting of the sum of the squares of the terms
in Eq. (6), with appropriate coefficients dictated by the function’s derivatives.

A third strategy 17 is to make the field more Maxwellian, for instance by reading
from the map only one field component and derive the others by using appropriate
expansion coefficients. This method is more physically sound and should produce a
more symplectic matrix. However, we expect that the integration of the equations of
motion, as much symplectic as it may be, will introduce errors.

5. Calculation of Orbit Matrices

Results for T matrices in the MO maps are the following.

For the full snake, 256 particles were extracted at random on a gaussian distribu-
tion consistent with a beam emittance of 20 mm-mrad. Fig. 13 shows the envelope
of some of the particles with the waist of the beam located at the center of the struc-
ture. Fig. 14 shows the phase (,2') phase space at the entrance and at the exit
of the snake. A linear fitting of the result produced the resulting matrix shown in
Table 111. In the table, the first column represents the coordinate of the 4 dimension
phase space ellipsoid at the exit. The matrix is only approximately symplectic.

Table IV shows the results of the symplect-ization process by minimization, and
the final values of the parameters of Eq. (6). The determinants of the symplectic
matrix is almost three orders of magnitude smaller than for the original matrix. The
values of the individual matrix elements are not very different from the original.
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Figure 13: Envelope of trajectories for T matrix calculation in a snake.

Table 11I: T matrix for a snake (B=1.28953/4.18456).

0.9920306191376677 11.96006510061943 -5.1050749584865447E-3  -8.7880018951171750E-3
-1.3378539066999720E-3 0.9921174261971000 -5.2071548418545064E-5  3.4016820282902378E-3
3.3847654290992467E-3  2.2957362109107662E-2 0.9496547114988628 11.75579625614213

-8.8551634147480553E-5 -3.4007674143296486E-5 -8.3630160486648300E-3 0.9531749369129638

=> det< T > = 1 +3.7303735145111094E-3

Table IV: T symplectic matrix. v = 27

0.9911097266680854 11.94896268737290 -5.1003359665691278E-3  -8.7798440775944432E-3
-1.3366119898031406E-3 0.9911964531453604 -5.2023210901644815E-5  3.3985242796246884E-3
3.3816233839498041E-3  2.2936051010962195E-2 0.9487731561762228 11.74488346369663

-8.8469432518334769E-5 -3.3976105146914302E-5 -8.3552527414103572E-3 0.9522901137989749

=> Symplecticity parameters of Eq. (6)
= det(T) =1 +8.5469733879239840E-6
0.998357 -2.694776E-6 7.615925E-3
4.274411E-3 7.155221E-2 1.00162
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Table V: Emittance through a snake.

=> Entrance

partial emittances: €z, €

wx 2.251109291171503E-5, 2.256254583135157E-5 m-rad
generalized emittance: ¢ -
72x 5.030156671871370E-10 m%rad?

coupling: x = €2 — ez X ¢y

x2x -4.891898347246872E-12 m?rad®

=> Exit. Symplectic matrix

partial emittances: €z, €y

X 2.245841611004496E-5, 2.260296230399004E-5 m-rad
generalized emittance: ¢

72x 5.030199664486383E-10 m?rad?

coupling: x = €% — €z X ¢y

x2x -4.606766294030711E-12 m®rad?

Table VI: Comparison of emittance growth.

Entrance Exit (Direct) Exit (Symplectic)

€ 2.251109291171503E-5  2.250017010355032E-5  2.245841611004496E-5
deg ez -4.852¢-4 . -2.333e-3

€y 2.256254583135157E-5 2.264498503331450E-5  2.260296230399004E-5
dey /ey 3.654e-3 1.791e-3

€ 5.030156671871370E-10  5.048921035093790E-10  5.030199664486383E-10
defe 3.730e-3 8.546e-6

X -4.801808347246872E-12 -4.623911732548276E-12 -4.606766294030711E-12
dx/x ' -5.478e-2 -5.829e-2

-

Table V shows the total emittance calculated from the particle distribution at the
entrance and exit of the snake through the symplectic matrix. The total emittance
is the determinant of the covariance matrix. Table VI shows how the emittance
grows, in absolute and relative terms, if we use the Direct or the Symplectic matrix,
respectively. The table shows that the total 4 dimensional emittance varies by two
order of magnitude less with the symplect-ized matrix than with the direct matrix.

6. Appendix. MO Field Map and Maxwell Equations

In the MO field map, we checked how well satisfied are the two Maxwell equations

V.B=0
¥V xB=0 (15)

We simply calculated the partial derivatives between two points separated by a dis-
tance dz,dy, or dz, as the field difference divided by the separation. We repeated the
calculation in different regions of the helix, for different separation and employing an
interpolation formula based on a 2% points (3-linear) or on 3° points (3-quadratic).
Results are shown in Table VII for a separation-of 1 mm between points, and quadratic



Table VII: Maxwell equations for a MO map.

3-quadratic interpolation dr =dy=dz=1mm

Center Near Edge
P (0.0000 0.0000 0.0000) (0.0234 -0.0231 1.1000)
vV-B -0.00257021 T/m 0.00349467 T/m
(V x B)z 0.00085674 T/m -0.00060580 T/m
(V xB)y -0.00035512 T/m -0.00047360 T/m
(V x B)x 0.00342675 T/m -0.00330706 T/m

interpolation.” We found a substantial improvement in moving from the linear to the
quadratic interpolation. The table shows that the field is no more Maxwell-ian at the
center of the helix than at both ends. Further work has shown that there is little or
no gain to move to a cubic interpolation, and also that a smaller separation between
points doesn’t significantly change the values of the derivatives.
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