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Recently three dimensional field calculation has been extensively
performed by T. Tominaka and M. Okamura on the helical magnet for the
RHIC spin snake and rotator. One of the main concerns of field calculation
is multipole field components which may have the different values from
two dimensional cases. In this report, the analytical formula of multipole
field expansion are given to investigate the numerical results of 3 D
calculation. The betatron tune shift and local chromaticity due to the
helical magnet field, are represented.

1. Multipole expansion

Near the axis of helical magnet, the magnetic field can be expressed

in the cylindrical coordinate system(r,9,s ) as b

B =- i iG,,,ma)mI'n(a)mr)sin(nO—a)ms) (1.1)
n=1,3,- m=1,2,~

B, =~ i i nG"’mlIn(wmr)cos(nG—- @,5) (1.2)
=13, m=1,2,- r

B =+ i i G, ,.0,1,(o,r)cos(nd - w,s) (1.3)
n=13,~ m=1,2,~

where the coefficients are defined by

2 n
Gn'm =n'(w—mj Bn,m (14)
and
2m—1 A
a)m=(___£_._).7r, L=—2- (15)

Ais a wavelength of helical magnet. I is the modified Bessel
function and its derivative is



I' (0,r)=1_(»,r)- a)n -

m

L(w,r) (1.6)

Leaving the fundamental term, namely n=m=1 term, the following
well known representation of helical field” are obtained.

a)1=—2£, GM=7BL1 (1.7)
B =-2B I, (—?)sin(e - —723) (1.8)
B, =—ZBM%II(—7%)COS(9——%) (1.9)
B, =2B, ], (—%r—)cos(G - ELE) (1.10)

Now we will expand the magnetic field including the higher
order terms of n. Concerning the longitudinal components, m=1
terms are assumed to be dominant. Then

Z oI, (@r)sin(n8 ~ os) (1.11)
n=13,-
1
Z nG,, =1, (rr)cos(n0 — @;s) (1.12)
n=1,3,-
B = 2 a)l COS(nB a)l) (1.13)
n=1,3,-
where
27 2 Y
wx="/1_, G, _n'(wljBn,l (1.14)

The modified Bessel function can be expanded as,

2k+n

L) =§‘ '(n+k) (“’1 ) (1.13)

I', (wlr) = In—l(wlr)—LIn(wlr)

o r



Z (2k+n (Dl 2hen-l
<2k +n)! (1.16)
The results of field expansion up to fourth orders of @7 are,

B=-2 G11(1+3a),r > )sin(e—-a)ls)
2 8 192%

+G;,| —ofr* + = > w4r4)sin(36—a)ls)

(1
8 384
1 .
+G5"(§§A: mfr“)sm(SG - w;s) | (1.17)
) 1 1
B, = ——ZL[GU(I *3 o+ — 55 ® )005(9 - o,s)

+G3',(—1— olr’ + —é—g o} r4)cos(30 - m;s)
|
i )cos(SG—a)ls) ] (1.18)

2
B =91—C[G“(1+1a)lr L wfr“)cos(@—a)ls)
8 192

+G;, (—l— oir? + E%Z o} r4)cos(30 - m,s)

+G51( a)l“r“)cos(SO—cols) ] (1.19)

1920

In the limit of @, =0 namely for the straight magnet,

limit B, = —[B,,sin@+3B; ,r*sin30 + 5B; ,* sin 50
a (1.20)

limit B, = ~[ B, cos 0+ 3B, r* cs36 + 5B;,r* cos 56] (1.21)

limit B, =0 (1.22)

o, —0
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Comparing these results with the 2 dimesional
coefficients of,

%:%g(

n=1,3

:r_) (b, cos(n8) + a, sin(n6))

0

B. =B, i [{—)n— (~a, cos(n6) + b, sin(n6))

n=1,3

we get the following relations

B, =-Byb,
1B,b
B31:_§ 023
r
1Byb
B =12
3! 5 rg

expansion

(1.23)

(1.24)

Inserting these results in the equations (1.17), (1.18) and (1.19),

the fields are represented as follows.

B = Bo{bl(l + %(w,r)z + —§—(0)1r)4)sin(9 - w;s)

192

+b, ((;’0—)2 + fg(a)lro ) [if ]sin(30 — 0,5)

g

+b5(1—)4 sin(56 — co,s)}

B, = Bo[bl(l + -l—a)lzr2 +1—;50)14r4)cos(0— @,s)

8

2 4
LA I W -
+b3[(roj + 16(co,ro) (”o] }005(39 @;s)

o

+b5(rLJ4 cos(56 a)ls)}

(1.25)

(1.26)



1 1
B: = —a)erol:bl(l + ga)lzrz + Ig—z—wfr4)cos(9 - CDIS)

2 4
1{ r 1 r
+b3[§(—;0—J + ?@(a)lro)z (;O_J ]008(39 - CUIS)
b 4
5 r
+?(—) COS(SO—wls):I (1.27)
At the radial position r=r,, reference radius, the fields are

3 5 )
B - Bo[bl(l +3(on) +Ig—2(a)lr0)4)sm(9— 0,)

+b,(1 +—f§(w1r0 )z)sin(30 ~ w,s)
+b,sin(50 — @;s) | (1.28)

1 1
B, = Bo{bl(l +—8—(a),r0)2 +1—9—2(w1r0)4)cos(9— @,s)

+b3(1 + Ilg(a)lro)zjcos(36 ~ w,5)

+bscos(56 — a),s)] (1.29)

1 1
B = —(DlroBoI:bl(l + —8-(a)lr0)2 + 19—2(w1r0)4)cos(9 - CO,S)

b 1
+—33—(1 + B(a)lro)zjcos(39 — o,5)

b _
+gscos(50—a)ls):| (1.30)

The vertical magnetic field is given as

B, = B,sin(8) + B, cos() (1.31)



and can be expanded as
B, =B, i[ﬁm(r)cosm9+ a,,(r)sinmo] (1.32)
m=0,2,4....

and the coefficients are derived with use of the above results.
They are

B.,(r)=h [1 + %a)frz + ?61:1- a)fr“]cos(w,s)

b b b b
B.,(r)= _ __0)1237‘3 ——glja)lzrz + [120)312r§ —9—‘6]a);‘r4}cos(w1s)

b, b;
- 52t~ 2a
Bwry; r,

B.u(r)=

jw:r‘*}os(w,s)

ao(r) =ﬁ20(r)ta'n(wls)
0, (r) = By (r)tan(w;s) (1.33)
a,,(r) = B,.(r)tan(,s)

@

(0, =27/ 2)
where b,(i=13,---) is 2D multipole field coefficients defined by

B, =B, i [_r_} (b, cosmf +a,,, sinmb) (1.34)

and skew components a,,4,,...=0 are assumed to be O in the
derivation.
At r=r, the coefficients becomes as

1 1
BzO(rO) = b1|:1 +Zw127'§ +aa){‘r§}c0s(w,s)
B.a(ro)=|b; —ﬁwfré + (—1—b3 —ﬁwfrg)a)lzroz}cos(a)ls)
: 8 12° 96

b
ﬁz4(r0) = |:b5 - _fs—wlzré]cos(a)ls)



2(76) = Ba(ro)tan(e;s) (1.35)

We shoud notice the sextupole component of

bB—%wfroz (1.36)

which has the additional term of -——i—’g‘—colzro2 comparing

with the normal dipole magnet. In the design of helical
magnet, this fact should be kept in mind. Even when one
designs the magnet ideally and the sextupole component
is zero in 2 dimensional configulation, the real helical
magnet has the intrinsic sextupole component given in
above equation, originated from the structure of helical
shape.

At the limit of @, =0, coefficients at s=0, center of helical magnet,
just equal to 2D coefficients as expected.

ﬁzO(r0)=b
ﬁzZ(r0)=b
ﬁz4(r0)=b5

—

w

Similarily horizontal field B, can be expanded as

B =B, i[ﬂm(r)cosm9+am(r)sinm9] (1.37)

B.o(r)==b, {1 + %wfrz + é wfr“}sin((ols)

bl b3 2.2 bl b3 4.4 [o3
=—| L+ o+ L+ —2— o w,s
ﬂxZ(r) {[ 8 ((01)‘0)2] 1 r 96 120)127-3 1 r Sln( 1 )



‘l’ B.u(r)= _l:[48£32r zt b 7 jwfr4]sin(0)1s)

(@yr5)

Q,o(r)= —ﬁxo(r)COt(wxs)
&, (r)=—B,,(r)cot(w@,s) (1.38)
Q. (r)= —ﬁx4(r)cot(a)1s)

At the limit of @w, >0

Bo(r)=B,(r)=B.,(r)=0
axo(r)=b1

Otxz(r)=b3(r/r0)2 (1.39)
ax4(r)=b5(r/r0)4

The longitudinal components of helical field are given as follows.

B =B, [B,.(r)cos(m+1)0+ o, (r)sin(m+1)mO]  (1.34)

m=0,2,4

Byo(r)= —bl[wlr + ';“(wlr)3 +i—;_2—(w1r)5]cos(w1s)

Bulr) === 25| 3(00) + (@) [eos(@)

B = %z| (o) Jeos(@)

0o (r) = By (r): tan(wls)
o, (r)=PB,(r) ~tan(a)ls) (1.40)
&, (r) = B, (r)tan: (o,s)

Limit B, (r)= Limit ot,, (r) =0

In the case of straight magnet, the longitudinal field is obviously
vanished.



2. Comparison of 3D calculated results and analytical
ones.

The magnetic fields in helical magnet are calculted numerically
with use of the TOSCA program on the BNL slotted type magnet. The
spiral angle is 345 degrees and the length is 2.30 m. The details of
3D results will be reported elsewhere3). Here the multipole
components and reference field are tabulated in Table 1, and
compared with the analytical results. In Table 1, B,p means the 2
dimensional magnet, namely the infinite wavelength helical magnet,
, and B,, By and B, means the real helical type magnet and their
multipole components are derived with B,, By and B, fields
representations. See the equations (1.28), (1.29) and (1.35). Between
2D and 3D results, the reference fields are different. Then multipole
components are normalized as the dipole components are unity in
each case. In the Table, upper values are from numerical calculation
by TOSCA program and lower ones are by the analytical formula
given in previous section. Both are calculated at the center of helical
structure, s =0.

Table 1 Comparison of analytical and 3D _calculated results

B2p By Bo Bz
Bref (Tesla) 2.8259 2.8865 2.8822 2.8843
n=0 1.0 1.0 1.0 1.0
(Dipole)
n=2 - 0.00219 - 0.00217 - 0.00217 - 0.00291
(Sextupole) - 0.00218 - 0.00219 - 0.00300
n=4 0.000372 0.000374 0.000374 0.000376
(Decapole) 0.000371 0.000372 0.000372

Both results are well in agreement with each other, and the
sextupole components of vertical field representation, are largely
different from the 2D case, as explained in the previous section.
From the beam dynamics point of view in the storage ring, the
sextupole components in the vertical field representation much
affects the betatron tune shift and chromaticity.
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3. The betatron tune shift and local chromaticity due to
"} the helical magnet

To get the betatron tune shift of proton beam due to the
helical magnet, we need the field gradient in the helical magnet.
With use of the relation of derivatives of

ﬂ = iBicosG—-lsin 6—8—3—2-

ox or r 00
the field gradient is represented as

%% =B, [% olx+ % o) (*® + xy* )} cos(@;s)

+B, (_2_33_ - %1- o} |(xcos(w,s)— ysin(w;s))
L ro )

bo? bo!)

or2 43 (2x3 cos(@,s)— (¥ + 3yx* )sin(a),s)) ]

+B,

=

_ , _
(_1’3_‘21_ + f%}(( x* = 3xy*)cos(w,s) + (y° - 3x2y)sin(wls))}

0_ 12r7 1,
(3.1))
or it can be rearranged as
4 2
LB _ ‘7‘—€3+1b]a)12 x + b‘—w-‘—+—13£2’—+4—l:5 x°
B, ox ro 4 48  4r, 1,
+ by +b3w12 125, ?|cos(w,s)
16 4r? ry ~ !
3 4 2
+| — z_gl_lblwlz v+ él_(f)_l__b:*_a)zl__f.ﬂ% y3
rg 4 48 4r, T
bw! bw? 12b
AL 2L 25 ey lsin(@ 3.2

In the limit of straight magnet, it becomes as
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‘l’ aaliz =B0[g%x+f1—}425’—(x3—3xy2):| (3.3)

o T

which is in agreement with 2 dimensional magnet case.

If we select the linear term only, the field gradient is given as

1 0B _ (g_bl + ?}blwlszcos(w,s) + [—2—])23 + %blcol2 ]ysin(co,s) (3.4)
¥,

2
B, ox |\ r, 0

Similarily the second derivative is given as follows.

138 _[(2, 1, o), (0ot 3008 125,
B, ox* 24 16 4r; ry

b bw?* 12b
H AL 37275 P lcos(w
( 16 4 1 )y Jeos(as)

N bo! b 24b,
8 2r: s

(3.5)

o

which is again in agreement with the 2 D magnet case as follows.

20 Jx’ T, 4

2
fimit s = Bo[-z—”ziJr 125 (2 -yZ)] (3.6)
The linear term is given as

1 &°B 2b, 1
E__bx_zzz(——zl+zblcolz)cos(a)ls) (3.7)
0 0

The betatron tune shift Av due to the field gradient of helical coil
is given by

1 tB(s) OB
Ay=— |2l 2 4 3.8
Y 47:! Bp ox (3-8)

where f(s) means the betatron function and the field gradient is
given in equation (3.4).
w The closed orbit in the helical coil is given by
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X=X, +x S—‘go—alé‘(l —cos(®,s))
1
(3.9)

B, 1 . . B 1
=Y, + ——=sm(w,s)+ ——=—)s
Y=Y Bp o (0,8)+(y, B 1)

where x,,x,',y,, ¥, mean the initial values at the entrance point of
the helical coils. Inserting these equations in (3.4) and (3.8)

and performing the integration in one helical coil gives the
following result

2
lﬁav BO ( = 4b (3.10)
4 Bp Bpw, o1y’

Av=

Here the betatron function in the helical coil is assumed to be
constant as f,,.
The magnetic field strengths of 4 helical coils are selected as

|B,|=|B,}, |Bi|=|B,| (3.11)
then the final results of the tune shift is

2.2
b“";") B2 +B,?) (3.12)

28 1
Av=—2Pa b, -
v (Bp)’ a)13r02( 3

which is different from the formula by M. Syphers.4) The
difference is originated from the sextupole component due to the
helical structure.

The local chromaticity is given by

ds (3.13)

jﬁ(S)

where D(s) shows the dispersion function at the helical magnet.
The second derivative of vertical magnetic field in the helical coil
is independent on the beam orbit as in the equation (3.7), then if
we assume the betatron function and dispersion function in the
helical coil are assumed to be constant, the local chromaticity is
almost zero.
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