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Magnetic field analysis of helical magnets

K. Hatanaka, RCNP /RIKEN
T. Katayama, INS /RIKEN

Three dimensional (3D) magnetic field calculated by the computer code TOSCA
was analyzed including the fringing field region. The magnetic field in the median
plane was well simulated by a simple function. Off median plane, contributions from
the coils should be taken into account.

1 Introduction

Beam trajectory and spin motion are numerically calculated, if the magnetic field
are given along the beam path. However it is not practical to store whole thefield
strengths along the helical snakes. Measured data have usually some errors and they
may not satisfy Maxwell equations. It is necessary to get analytic expressions of the
magnetic field not only to reduce the storage area of calculated/measured data but
also to keep the accuracy of transfer matrix of spin and orbit.

2 Multipole expansion of the magnetic field

2.1 Cartesian coordinate system

In a current free region in vacuum where the electric field E is constant, the magnetic
field B can be derived from a scalar potential ¥ as

B=-v¥ (1)

In a Cartesian coordinate system, the scalar potential is expanded in power series
of z and y coordinates.
[o o] oo .,L.n ym
v= ,EO,;A% ~(2) n! m! (2)
where z is a coordinate of axis. If the magnetic field has a median plane symmetry,
¥ is an odd function of y; i.e., m = odd [1]. The Laplace equation, A¥ = 0, gives
the following recurrent relation between coeflicients:

A, nt2(2) + A, n(2) + A1('r2L? n(2) =0 (3)

Coeflicients, Ao, »(2z) and Ay ,(z) are obtained as functions of 2, from the expansion
of By(z,0,2) and By(z,0,z) in the median plane in series of z at each z-position.



Therefor, all the coefficients are determined from the analysis of measured /calculated
magnetic field only in the median plane.
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With these coefficients, Bx(z,y, 2), By(z,y, z) and B,(z,y, z) are calculated off me-
dian plane as below.
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2.2 Cylindrical coordinate system

In the central region of a helical dipole magnet or for a helical magnet of infinit
length, the magnetic field has a cylindrical symmetry and a solution of the Laplace
equation AU = 0 is given by [2],
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X [dn cos((n + 1)) + by, sin((n + 1)8)]}, (10)
where I, are modified Bessel functions and 6 is defined as
0=0—kz. (11)

where k = 27/X and A is the wave length of the helix. Modified Bessel functions are
expanded in the form of the ascending series of r,

Ln((nt D) =3 -2 (BF DRz (12)
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Now, the magnetic field can be computed as
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X [an cos((n + 1)) + by sin((n + 1)0)]}, (13)
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Multipole coefficients, a, and b, are related with a, and b, in a two-dimensional
approximation (a straight magnet) [3],

O = G cos((n + 1)kz) — by sin((n + 1)kz2), (18)
by = G sin((n + 1)kz) + b, cos((n + 1)kz). (19)

If we expand B, in series of r at z = 0, normal components are

By/By=[1+~ (kr)2 + (higher order of 7™)] - bo

+{[b2— -;—(krof +bo) (7‘1)2 + (higher order of 7™)} cos(26) +{higher multipoles} (20)
0

Helical dipoles have sextupole components originating from the structure [4]. When
the magnet length, A = 240 cm and the reference radius, rg = 3.5 cm, then the
sextupole contribution from the dipole field becomes

é(kro)z ~1x 1072 (21)

3 Numerical analysis

3.1 Fitting procedure

In order to analyze the magnetic field calculated by Dr. Okamura [5], the scalar
potential was assumed to be expanded as

T=-By (- )n{[2n+zy+1 LY+ 0y, 4(2)] cos((n+1)6)

n=0
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Here, a,, j(2z) and b, J(z) are functions of z, and they are cos((n + 1)kz) - or
sin((n+1)kz) - like functions for an infinitely long magnet. The order of magnitude
of their derivatives are estimated as ‘

() = () = o(n + DR™) - g,



~ o(107*"(n + 1)*™) - ay, ;. (23)
From the Laplace equation, A¥ = 0, a,, ;(z) and a,, ;(z) satisfy following relations,
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Coefficients a,, j(z) and b, j(z) were determined by fitting the radial field B, and
By in the median plane (f# = 0 or 7), respectively. In the fitting procedure, the
maximum value of n was taken 6 and odd n values were also included. The j’s
were taken to be zero except for n = 0 (dipole component). Ounly the second
derivatives of ag, o and by, ¢ were taken into account and higher order derivatives
were negrected. This assumption is reasonable from the previous estimation of the
order of magnitudes for coefficient a,, ; and b, ; in (23). Following expansion was
used in the fitting procedure,
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The longitudinal field B, was computed with coefficients obtanted above,

B.= =2 = By rilabo + 3ab (5 cos(0) + by + 300 (=)]sin(0)

6
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3.2 Results

At each z-position, coefficients a,o(z) and bno(2) were determined by fitting the 3D-
calculated field B, and By in the median plane (y = 0) with equations (26) and (27).
The 3D-field was calculated from z, y = -35 mm to 35 mm in 5 mm step including
the iron core [5]. So, 14 coefficients were determined by fitting the calculated fields
at 30 points with the Simplex minimizing procedure. Figure 1 shows a comparison
of the 3D-field and that fitted with equations (26) and (27). In the median plane,
the 3D-field B, and B, are well approximated including the fringing field region



by the function assuming a cylindrical symmetry. The longitudinal field B, was
“predicted” with the equation (28) and it agrees with the 3D-field very well.

Off the median plane, for example along the line z = 0 and y = 3 cm, relatively
large differences are observed between 3D-results and our approximation, especially
at the magnet edge. The vector potential A by a current dr parallel to the z-axis
at y = yo and z = z; is given by

- I I
A= po— = o (29)
drr - amy [y — v0)? + (2 — 20)°
The magnetic field from this vector potential is calculated as
B =rotA (0, ZT % Yo~ Y ) (30)

(v — 90 + (2 — 20)2)F (g — 90)2 + (2 — 20)2]3

As shown in Fig. 3, the fitting errors observed for the By, field at the magnet edge are
well described by the sum of three terms with the functional form (30) corresponding
to a magnetic field generated by a line current parallel to the z-axis. Fitting errors
for the B, field at the edge is also described by the functional form derived from
three line currents at the same positions, if the these currents are reduced by a factor
of four. At the edge of a helical magnet, there are currents not only parallel to the
z-axis but also those parallel to the z-axis. The latter cause additional B, field but
do not have B, component. Altough the field (30) overestimates the contribution for
B, due to such a simplification, it shows that we have to take account of the effects
of the coil at the end of a magnet. Inside the magnet, on the other hand, magnetic
field is well described by a simple function of cylindrical symmetry including the
fringing field region.

4 Summary

Calculated 3D-field was analyzed to obtain the analytic expressins satisfying Maxwell
equations. In the median plane, the field B, and B, were well expanded with simple
functons of a cylindrical symmetry including the fringing field region. The longitu-
dinal field B, was also well “predicted” with parameters obtaind by fitting B, and
B,. Off median plane, on the other hand, effects of coils parallel to the z-axis were
required to explain the difference between 3D-field and the “predicted” field from
the analysis. Present procedure can be applied to analyze measured magnetic fields
for helical magnets.
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Fig. 1. Left figures show the calculated 3D-field (solid curves) and the “predicted”
field (dashed curves) by equations (26)-(28) in the median plane, z = 3 cm and
y = 0 cm. Right figures shows their difference divided by By. The magnet center is
at z =0 cm and the end is at z = 120 cm.
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Fig. 2. Same as Fig. 1, but off the median plane, x =0 ¢m and y = 3 cm.
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Fig. 3. Dotted curves show the simulation of the magnetic field generated by three
line currents parallel to the z-axis. Their positions and strengths are optimized to
fit the By field. The corresponding B, field is reduced by a factor of four, although
the current positions are same.
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