

BNL-104058-2014-TECH AGS.SN181;BNL-104058-2014-IR

To Program Power Supplies for Horizontal and Vertical High Field Quadrupole Strings to Shift Tune of AGS During Acceleration Cycle

A. Feltman

May 1985

Collider Accelerator Department Brookhaven National Laboratory

U.S. Department of Energy

USDOE Office of Science (SC)

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Number 181

AGS Studies Report

Date(s) <u>May 22, 19</u>	85 Time(s) 0400 - 0700
Experimenter(s) <u>A</u> .	Feltman, J. Funaro, R. DiFranco
Reported by A.	Feltman
Subject/Experiment	To program power supplies for horizontal and verti-
	cal high field quadrupole strings to shift tune of
	AGS during acceleration cycle

Preliminary Preparation

Two function generator cards were installed and SEB programs QVERT and QHORIZ were setup to talk to these cards. The function generator outputs were coupled to the respective d.c. power supply reference inputs. The SCR bridges were also bypassed.

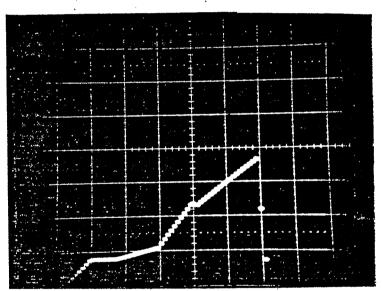
Observations and Conclusion

QHORIZ and QVERT wre called and the respective function generators programmed through "FUNK". QHORIZ was setup in the LIN mode and QVERT was setup in the ramp mode. This was done to demonstrate the versatility of the function generators.

The function generator amplitudes and time settings are as shown with photos of the function generator output voltages and the corresponding magnet string currents.

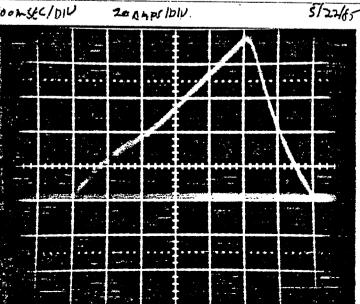
One hundred amps full scale was used rather than two hundred amps because it appeared that we could not drive the power supply this high. It appears that the MUX for QVERT is probably off by 2/1.

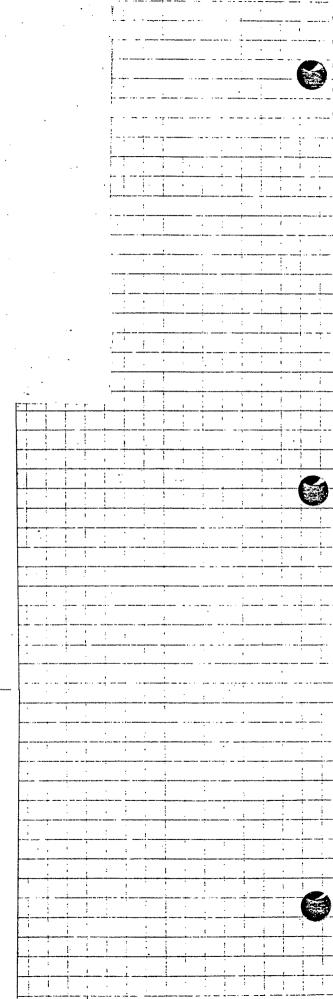
mvh


	-	-	•	-	-
-87	"	•	•	٠	٠

2

یمد مد. ۲۰ م


- -


SEB		HFELT		2-May-85	96:37	27.9
TIME	2= 1000	PRIORI				
_	AREA	EQPT	REQUES	ST	READBACK	
1	SEB	QHORZ	1	ON	515 -514	
2	SEB	QH1A	50	•	MSEC TØ	
. 3	SEB	QH1S	10	LIN 🗇	MSEC TØ	
• 4	SEB	QH1T	· 4	ON	MSEC TØ	
5	SEB	QH2A	380	•	MSEC TO	
6	SEB	QH2S	40	LIN	MSEC TØ	
7	SEB	QH2T	12	ON '	MSEC TO	
8	SEB	QH3A	500	•	MSEC TO	
9	SEB	QH3S	10	LIN /	MSEC TO	
10	SEB	QH3T	28	ON	MSEC TO	
11	SEB	QH4A	1000		MSEC TØ	
12	SEB	QH4S	50	LIN '	MSEC TO	
13	SEB	QH4T	40	ON .	MSEC TO	
14	SEB	QH5A	2000	•	MSEC TO	
15	SEB	QH5S	30	LIN :	MSEC TO	
16	SEB	QH5T	52	ON .	MSEC TO	
17	SEB	QH6A	-1000	1	MSEC TØ	
18	SEB	QH6S		LIN	MSEC TO	
19	SEB	QH6T		ON :	MSEC TO	

100msEC/DIV

5/22/85

SEB		AFELT	22	2-May-85	06:15 16.2
TIBE=	1000	PRIORIT		•	
	AREA	EQPT	REQUES	ST .	READBACK
1	SEB	QVERT	1	ON	0 1
2	SEB	QV1A	50	:	MSEC TO
3	SEB	QV1S	50	LIN '	MSEC TO
4	SEB	QV1T	2	OFF !	MSEC TO
5	SEB	QV2A	700	•	MSEC TO
6	SEB	QV2S	200	RMP .	MSEC TO
7	SEB	QV2T	4	ON .	MSEC TØ
8	SEB	QV3A	700	•	MSEC TO
9	SEB	QV3S	400	RMP	MSEC TØ
10	SEB	QV3T	26	ON .	MSEC TO
11	SEB	QV4A	1700	•	MSEC TO
12	SEB	QV4S	800	RMP .	MSEC TO
13	SEB	QV4T	40	ON .	MSEC TO
14	SEB	QV5A	1000	•	MSEC TØ
15	SEB	QV5S	32	RMP	MSEC TO
16	SEB	QV5T	32	ON	MSEC TO
17	SEB	QV6A	-2000	.*	MSEC TO
18	SEB	QV6S	1000	LIN .	MSEC TØ
19	SEB	QV6T	70	ON .	MSEC TO
			:		

5/22/82 100 m SEC 101 20/010

20 AMPS /DIV

Į. 1ª 100 msec/Div

5/22/15

· ì :

 	1.0	illes A.	a grader	angipti	1		1	
	•••							•
								<u> </u>
		J						
55 S.								
ي ٿيود م						1. No. 14 1. St. 1		-
				12 (Š.) 17 (M.) 17 (M.)				
								-

VOUDD

i i

; ÷ :