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Emittance Growth from Electron Beam Modulation

M. Blaskiewicz*
BNL, Upton NY 11978, USA

In linac ring colliders like MeRHIC and eRHIC a modulation of the electron bunch can lead to
a modulation of the beam beam tune shift and steering errors [1-3]. These modulations can lead
to emittance growth. This note presents simple formulas to estimate these effects which generalize
some previous results.

I. THEORY OF QUADRUPOLE GROWTH

Consider one dimensional motion in the z direction with bare tune ). We use the evolution variable 6 which
updates by 27 each turn. The interaction point is at = 0, the modulating beam beam force is denoted by €(f) and
the hamiltonian is given by

Hap.0) = 2E9T 5 09 o), W

where the periodic delta function is
o0
5p(0) = > (0 —2nk).
k=—o00

The equations of motion are dz/df = 0H/0p and dp/df = —0H/Ox. Do a canonical transformation to action angle
variables with z = 1/2J/@sinv¢ and p = /2JQ cos ¢ yielding

H(1, J,0) = QJ + 6,(6)J sin® 1e(8). (2)

Averaging over ¢ and € with < ¢,(0) >= 1/27 one finds < H(J) >= QJ + J < € > /4w so the average beam beam
tune shift is < Q) >=< € > /4w. We redefine the tune to be @ — Q+ < §@Q > and introduce the fluctuating part of
the noise. de = e— < € >. The hamiltonian becomes

H (1, J,0) = QJ + 6,(6)J sin® pde(8). (3)

The emittance growth is due to the modulation in de and the equations of motion are

dJ OH .

= % = —0,(0)J sin(2¢)de(6)
and

d oOH

d% = == = Q+8,(0) sin® 45 (6).

The expansion parameter is de. To zeroeth order v (6) = Q6 + 1/3 To first order in de

0
0i(0) = QO+ + / 5,(5) sin(Qs + §)de(s)ds (1)
i )
~ QO+ — 3 /6p(s) cos(2Qs + 2¢))de(s)ds. (5)
0
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The evolution of the action is given by

dlnJ

5 = ~0p(0)sin(20)de(9) (6)
~ —0,(0) sin(2¢1(6))0e(6) (7)
~ —6,(0)sin(2Q0 + 2¢))d(6)

[4
+ 6,(8) cos(2Q8 + 24)5¢(6 / 5, (s) cos(2Qs + 20)5e(s)ds (8)
~ —0,(0 )sm(2Q0+2¢)56(0)
P 2
+ %d% [ / dp(s) cos(2Q8+2zE)6e(s)ds] : 9)

Integrating equation (9) one finds J(6) = J(0) exp(u(#)) where

2

0
/6p sin(2Qs + 24)de(s) [/6 cos(2Qs + 2¢))de(s)d ]
0

As long as u is small compared to one, which is necessary for eq (8), the first term on the right hand side dominates.
Hence u is effectively the sum of a large number of uncorrelated random variables and therefore nearly a gaussian
random variable. Notice that

0 2
< u() >= <% [ / 5, (s) cos(2Qs + 21/3)56(3)613] > ~ 022

Now since < exp(u) >= exp(< u > +02/2) for a gaussian, we have < J(#) >= J(0)exp(2 < u(f) >) and the
problem is to evaluate < u(f) >. Start by using the periodic delta function to turn the integral to a sum and define
de(2mk) = dey, so that

<2up > = Z Z cos(4mQk + 2¢) cos(4nQm, + 2) < Serbey, > (10)
k=0 m=0
n n 1
~ Z Z 3 cos(4mQ[k — m]) < dexde,, > ()
k=0 m=0
= 1
~n m;oo 3 cos(4m@Qm) < depdemip > 12

where ey, is assumed to be stationary noise. As a simple model take < dexd€,,1x >= o2 exp(—a|m|). In this case the
sum can be done resulting in

)
ln<@> =< 2u, >= nUQ 1-¢ . (13)
J(0) 214¢ 22 ¥ _2cos(4mQ)e ~ ¢

II. COMPARISON WITH SIMULATIONS

For simulation purposes I take a one turn matrix followed by a thin lens beam beam kick,

Tn(k+1) = cost,x, (k) + sin,p, (k) (14)
pn(k + 1) = COSZ%Pn("’) - Slndjnxn(k) + 6kmn(k + ]-) (15)
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FIG. 1: Comparison of simulation and equation 12. The correlation suppression factor is 0.06.

where k is the time like variable and each of the n particles has a slightly different phase advance to create filamentation.
The beam beam kick €, is normalized as above. Comparison of a simulation and equation (13) is shown in Fig 1.
The correlation time of the noise was a = 0.1 and @ = 0.2 resulting in a growth rate only 0.06 of what it would be
for white noise of the same amplitude. As one can see from the figure the agreement is very good over many e-folding
times. Of course in a real beam the electron kick is not purely linear so the growth would be reduced. In any case
the formula seems reliable for an e-folding time.

III. GROWTH DUE TO STEERING ERRORS

Along with variations in electron beam intensity and emittance there can also be steering errors. We start by
writing the one turn map in the linear approximation

z(k+1)
' (k+1)

cos x(k) + sin ez’ (k)B* (16)
cos Yz’ (k) — sinvpz(k) /8" — e[z(k + 1) —y(k + 1)]/B* (17)

where y(k) is the electron beam offset, 5* is the beta function at the crossing point, and the beam beam tune shift is
€/4n as before. We neglect the beam beam tune shift and define z(k) = z(k) + i8*2'(k) then

2+ 1) =e Vo) +iey(k + 1). (18)
Set U(k) = z(k) exp(ikt)) yielding
Uk+1)=U(k) +iey(k + 1) exp(i(k + 1)3), (19)
so that
&
U(k) = U +ie Y y(m)exp(imi)). (20)
m=0
Taking averages
<|URP > = U + €)D" <y(my(l) > exp(i(m — £)y) (21)
m  {
~ |Uo|® + ke® Z < y(m + O)y(£) > cos(m)) (22)

m=—00



Taking < y(m + £)y(£) >= o, exp(—a|m|) one finds

1_6—2a

26,ms B =< |U(K)|* >= |Uo|® + k(eay)? 5
14+e

where €,.,s =< ? > /3* is the rms geometric emittance of the ion beam.
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