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Study of Quadrupole Fringe Fields in the Interaction Region of the 
Hadron Storage Ring of the Electron Ion Collider 

F. Willeke, December 2025 

1. Introduction 

Fringe fields in quadrupole magnets are usually neglected in studies of beam dynamics at accelerators. 
However, the extreme optical parameters present in the final focus of a collider such as the Electron–Ion 
Collider (EIC) may give rise to effects that should not be overlooked. 

The calculation of quadrupole fringe fields presented in this study follows the procedure outlined in Ref. 
[1], specialized to the case of a straight reference orbit (i.e., with no dipole field component). A right-
handed Cartesian coordinate system is employed, with the 𝑧-axis aligned with the quadrupole axis and 
𝑥 and 𝑦 denoting the horizontal and vertical transverse coordinates, respectively. The magnetic 
quadrupole field gradient, 𝐺 = ∂𝐵௬/ ∂𝑥, transitions from its peak value inside the quadrupole—where it 
is nearly independent of the longitudinal coordinate 𝑧—to zero at some distance beyond the magnet edge. 
Consequently, 𝐺is treated as a function of 𝑧. The region over which this variation occurs is defined as the 
quadrupole fringe field region. 

The study begins with the development of a description of the magnetic field in the fringe region using a 
power-series expansion in the transverse coordinates 𝑥and 𝑦, consistent with the longitudinally varying 
gradient. A model for the 𝑧-dependence of the gradient is then proposed and adjusted to reproduce 
magnetic field data obtained from three-dimensional field calculations. To evaluate the impact of the 
fringe fields on beam dynamics, the corresponding vector potential is derived and incorporated into a 
Hamiltonian formulation of particle motion. 

The significance of the fringe fields is quantified by calculating the amplitude-dependent tune shift from 
the Hamiltonian. Using linear beam optics parameters of the Hadron Storage Ring (HSR) of the EIC, the 
tune shift due to the fringe fields of all quadrupole magnets in the IR-6 interaction region is evaluated. 
Finally, the resulting tune shifts are compared with those arising from other nonlinear field components 
present in the HSR. 

 

2 Magnetic Field in the Fringe Region of a Quadrupole Magnet 

The static magnetic field in a region where the current density is zero, can be described by the gradient of 
a scalar potential (x,y,z): 

 𝐵ሬ⃗ = ∇ሬሬ⃗  Φ(𝑥, 𝑦, 𝑧)    (1) 

subject to the condition 

 ∇ሬሬ⃗  B = 0. (2) 

This constraint immediately implies that the scalar potential satisfies the Laplace equation 
 
         ΔΦ = 0. (3) 
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To capture the detailed spatial structure of the field—especially its gradual longitudinal variation in the 
fringe region—the scalar potential Φ(𝑥, 𝑦, 𝑧) is expanded as a power series in the transverse coordinates 
𝑥 and 𝑦, evaluated at each longitudinal position 𝑧 along the straight reference trajectory through the 
magnet center: 

 
Φ(𝑥, 𝑦, 𝑧) = ෍ 𝐶௡,௠

ஶ

௡ା௠வ଴

(𝑧)ௗ
𝑥௡𝑦௠

𝑛! 𝑚!
. 

(4) 

 
This expansion expresses the magnetic ϐield as a hierarchy of multipole components whose 

strengths evolve smoothly along the longitudinal axis. 

Substitution of this series into the Laplace equation yields a recursion relation that tightly couples 

the longitudinal dependence of the expansion coefϐicients to their transverse order: 

𝐶௡ାଶ,௠(𝑧) + 𝐶௡,௠ାଶ(𝑧) + 𝐶ᇱᇱ
௡௠(𝑧)= 0 (5) 

where the prime denotes differentiation with respect to 𝑧. 

The magnetic field itself follows directly from the gradient of the scalar potential, 

𝐵ሬ⃗ = ∇ሬሬ⃗  Φ(𝑥, 𝑦, 𝑧) = ෍ ቎

𝐶௡ାଵ,௠(𝑧)

𝐶௡,௠ାଵ(𝑧)

𝐶′௡,௠(𝑧)

቏
𝑥௡𝑦௠

𝑛! 𝑚!

ஶ

௡ା௠வ଴

 
(6) 

 

It is assumed that the dipole fields are zero and there are only fields with midplane symmetry: 

𝐶ଵ଴ = 𝐵௫(0,0, 𝑧) = 0,  𝐶଴,ଵ = 𝐵௬(0,0, 𝑧) = 0,   𝐶ଵଵ = 𝐺(𝑧),   𝐶ଶ଴ = 0,   𝐶଴ଶ = 0,    𝐶଴଴ ≡ 0 (7) 

We also verify that ∇ ሬሬሬ⃗  × 𝐵ሬ⃗ =  0  

    
డ஻ೣ

డ௬
= ∑ 𝐶௡ାଵ,௠ାଵ(𝑧) ∙

௫೙௬೘

௡!௠!
=

డ஻೤

డ௫
ஶ
௡ା௠வ଴   =  ∑ 𝐶௡ାଵ,௠ାଵ(𝑧) ∙

௫೙௬೘

௡!௠!
ஶ
௡ା௠வ଴  , 

        
డ஻೥

డ௬
= ∑ 𝐶ᇱ

௡,௠ାଵ(𝑧) ∙
௫೙௬೘

௡!௠!
  =

డ஻೤

డ௭
ஶ
௡ା௠வ଴  = ∑ 𝐶′௡,௠ାଵ(𝑧) ∙

௫೙௬೘

௡!௠!
ஶ
௡ା௠வ଴   , 

               
డ஻ೣ

డ௭
= ∑ 𝐶ᇱ

௡ାଵ,௠(𝑧) ∙
௫೙௬೘      

௡!௠!
=

డ஻೥

డ௫
ஶ
௡ା௠வ଴  = ∑ 𝐶′௡ାଵ,௠(𝑧) ∙

௫೙௬೘

௡!௠!
ஶ
௡ା௠வ଴         . 

 

(8𝑎, 𝑏, 𝑐) 

One identifies the coefficients 𝐶௡௠ as  

𝐶௡,ଵ =  
𝜕௡𝐵௬

𝜕𝑥௡
, 𝐶ଵ,௠ =  

𝜕௠𝐵௫

𝜕𝑦௠
, 𝐶௡ାଵ,଴ =  

𝜕௡𝐵௫

𝜕𝑥௡
,   𝐶଴,௠ାଵ =  

𝜕௠𝐵௬

𝜕𝑦௠
          

(9) 

In particular, there is 

𝐶ଵ,ଵ(𝑧) =  
𝜕𝐵௬(𝑥 = 0, 𝑦 = 0, 𝑧)

𝜕𝑥
=

𝜕𝐵௫(0,0, 𝑧)

𝜕𝑦
=  𝐺(𝑧).         

 

(10) 

Having this in mind, one can construct the power series for the magnetic field in the fringe field region: 
Using the recursion relation, equation (5) we put 

−𝐶ᇱᇱ
ଵ,ଵ =  𝐶ଷ,ଵ + 𝐶ଵ,ଷ.   (11) 

By preserving x-y symmetry of the quadrupole field,  𝐵௫(x,y) = 𝐵௬(𝑦, 𝑥), we obtain 
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𝐶ଷ,ଵ = 𝐶ଵ,ଷ = −
ଵ

ଶ
∙ 𝐶ᇱᇱ

ଵ,ଵ = −
ଵ

ଶ
∙ 𝐺′′  

 

(12) 

The symmetry argument is used also to determine the next order coefficients by employing the recursion 
relation equation (4):  

        −𝐶ᇱᇱ
ଷ,ଵ =

1

2
∙ 𝐺ᇱᇱᇱᇱ = 𝐶ହ,ଵ + 𝐶ଷ,ଷ 

       −𝐶ᇱᇱ
ଵ,ଷ =

1

2
∙ 𝐺ᇱᇱᇱᇱ = 𝐶ଷ,ଷ + 𝐶ଵ,ହ 

0 =  𝐶ହ,ଵ − 𝐶ଵ,ହ 
𝐶ହ,ଵ = 𝐶ଷଷ                     

𝐶ହ,ଵ   =  𝐶ଷ,ଷ =
1

2
𝐺ᇱᇱᇱ′ 

 

(13𝑎, 𝑏, 𝑐) 

This results in the following expressions for the transverse magnetic field in the fringe field region up to 
5th order in the coordinates: 

𝐵௫ = 𝐺(𝑧) ∙ 𝑦 − 
ீᇲᇲ

ଵଶ
∙ (𝑦ଷ + 3𝑥ଶ𝑦) +

ଵ

ସ଼଴
∙ 𝐺′′′′ ∙ (5𝑥ସ𝑦 + 10 ∙ 𝑥ଶ𝑦ଷ + 𝑦ହ) 

𝐵௬ = 𝐺(𝑧) ∙ 𝑥 −  
𝐺ᇱᇱ

12
∙ (𝑥ଷ + 3𝑦ଶ𝑥) +

1

480
∙ 𝐺′′′′ ∙ (5𝑦ସ𝑥 + 10 ∙ 𝑥ଷ𝑦ଶ + 𝑥ହ) 

𝐵௭ = 𝐺′ ∙ (𝑥 ∙ 𝑦) −
1

12
∙ 𝐺′′′ ∙ (𝑥ଷ𝑦 + 𝑥𝑦ଷ) 

 

(14𝑎, 𝑏, 𝑐) 

Note that this construction of the field  implies ∇𝐵ሬ⃗ = 0 and ∇ × 𝐵ሬ⃗ = 0  

For the vector potential 𝐴 that from which the magnetic field described by (equations 14) is 

derived by  𝐵ሬ⃗ = ∇ ሬሬሬ⃗ ×  𝐴 , a gauge field that preserves the  symmetry in the x and y coordinates is 
chosen: 

𝐴 =
1

12
∙

⎣
⎢
⎢
⎢
⎢
⎡

  

−
𝐺ᇱ

12
∙ (𝑥ଷ + 3𝑦ଶ𝑥) +

1

480
∙ 𝐺′′′ ∙ (5𝑦ସ𝑥 + 10 ∙ 𝑥ଷ𝑦ଶ + 𝑥ହ)

  
𝐺ᇱ

12
∙ (𝑦ଷ + 3𝑥ଶ𝑦) −

1

480
∙ 𝐺′′′ ∙ (5𝑥ସ𝑦 + 10 ∙ 𝑥ଶ𝑦ଷ + 𝑦ହ)

1

2
∙ 𝐺(𝑧) ∙ (𝑦ଶ − 𝑥ଶ) ⎦

⎥
⎥
⎥
⎥
⎤

 

 

(15) 

 

3 Fringe Fields of the Final Focus Quadrupoles in the Interaction Region for 
the Hadron Storage Ring of the EIC 

The following is based on the 3D design of the EIC IR final focus quadrupole magnets. The 
quadrupole gradient on the design orbit in the fringe field region has been calculated using a 
numerical 3D field calculation [5] with appropriate magnet field calculation computer codes. 
Figure 1 shows the numerical data of the quadrupole field gradient G for x = y = 0  as a function 
of the pathlength of the straight design orbit z that passes through the center of the magnet. 
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Figure 1a shows the gradient over the entire magnet and Figure 1b shows only the fringe field 
region.  

 

Figure 1: Results of the numerical magnetic field calculation for the quadrupole magnet Q1pf of 
the HSR in the EIC IR. Figure 1a shows the entire length of the magnet, Figure 1b shows only 
the fringe field region. (Curtesy Anis Ben Yaya see  ref (5)). Note that the gradient is symmetric 
around the magnet longitudinal center. 

The data in the fringe field region are modeled by an Enge-function [6], Gmodel as  

𝐺௠௢ௗ௘௟(𝑧) = 𝐺଴ ∙  
ଵ

ଵା௘௫௣൬ଵା∑ ቀ
೥ష೥బ

∆೙
ቁ

మ೙
ర
೙సభ ൰

    (16)

  

and the parameters of this function are adjusted to minimize the mean square difference between 
the modeled function and the results of the numerical magnetic field calculation. The parameters 
are: 
G0 =332.14 T/m; z0 =131.212 mm; 1 =238.223 mm, 2 =151.143 mm, 3 =318.493 mm
4= 325.300 mm, z = z0 corresponds to the hard edge position of the quadrupole. 
The result of fitting Gmodel function is compared with the numerical data in Figures (2,3). 
 

 
 



5 
 

Figure 2: Comparison of numerical data with the model function of the quadrupole gradient of 
the magnet Q1pf in the fringe field region 

Figure 3 Comparison of the first  (a) and second (b) derivative of the numerical and modeled 
quadrupole gradients G with respect to z in the fringe field region of quadrupole Q1pf. 

Figures 1 and 2 show that the quadrupole gradient in the fringe field region is reasonably well 
described at a function of z by the model function Gmodel. 

4 Beam Dynamics Assessment 

The full assessment of the beam dynamics impact of the quadrupole fringe fields can only be 
evaluated by inserting the fringe field description in a particle tracking code. The purpose of this 
note, however, is to determine whether the impact of fringe fields is important compared to the 
other nonlinear fields in the accelerator. For this reason,  in the following, the leading amplitude 
dependent tune shift (referred to as detuning term) is determined and compared with the tune 
shift resulting from sextupole magnets. The first step of the assessment is to write the 
Hamiltonian 

𝐻 =  ට𝑚଴
ଶ𝑐ସ + 𝑐ଶ ∙ (𝑝௫ − 𝑒𝐴௫)ଶ + 𝑐ଶ ∙ (𝑝௬ − 𝑒𝐴௬)ଶ + 𝑐ଶ ∙ (𝑝௭ − 𝑒𝐴௭)ଶ  

(12) 

 

(17) 

(px, py, and pz being the canonical momenta, and H = E = constant). In the usual accelerator 
coordinate system with the pathlength along z as the independent variable, the longitudinal 
momentum 𝑝௭ becomes the Hamiltonian 

𝑝௭ ≡ 𝐾 =  ට𝐻ଶ − 𝑚଴
ଶ𝑐ସ + 𝑐ଶ ∙ (𝑝௫ − 𝑒𝐴௫)ଶ + 𝑐ଶ ∙ (𝑝௬ − 𝑒𝐴௬)ଶ +  𝑒𝐴௭  

 

(18) 

which leads to  

𝐾 =  𝑃ට1 + 𝑐ଶ ∙ (𝑥′ −
௘஺ೣ

௉
)ଶ + 𝑐ଶ ∙ (𝑦′ −

௘஺೤

௉
𝑒𝐴௬)ଶ +

௘஺೥

௉
 (18) 

 

(19) 
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where 𝑐𝑃 = ඥ𝐻ଶ − 𝑚଴
ଶ𝑐ସ   is the total mechanical momentum and 𝑥ᇱ, 𝑦ᇱ =

௣ೣ,೤

௉
. 

Since all quantities under the square root  besides 1 are small compared to unity, the square root 
is expanded to first order. Neglecting the constant term and using the vector potential of equation 
15, we obtain the final form of K by limiting to leading terms (thus, terms of order >4 in the 
coordinates are neglected) for further analysis : 

K = −
ଵ

ଶ
𝑥ᇱଶ

−
ଵ

ଶ
𝑦ᇱଶ

−
ଵ

ଶ
∙

௘

௉
∙ 𝐺(𝑧) ∙ (𝑦ଶ − 𝑥ଶ) −

ଵ

ଵଶ

௘

௉

డீ(௭)

డ௭
(𝑥ଷ𝑥ᇱ + 3𝑦ଶ𝑥𝑥ᇱ + 𝑦ଷ𝑦ᇱ  +

3𝑥ଶ𝑦𝑦ᇱ) 

(20) 

                                                           +higher order terms    

The next step is expressing K in action J and angle Φ variables which removes the linear part  

−
1

2
𝑥ᇱଶ

−
1

2
𝑥ᇱଶ

−
1

2
∙

𝑒

𝑃
∙ 𝐺(𝑧) ∙ (𝑦ଶ − 𝑥ଶ) 

 

(21) 

from K. Note that the linear optic uses the quadrupole strength inside the magnet and a 
quadrupole length that  is obtained  by integrating the gradient G(z) over z and dividing  by the 
gradient inside the magnet. Thus, the quadrupole gradient component the fringe field is already 
taken into account in the linear optics in reasonable approximation. 

Note also that there is a difference in the choice of angle variable: choosing Φ௫,௬ =  𝜓௫,௬(𝑧) +

𝜙௫,௬ adds  the terms  𝑄௫,௬ ∙ 𝐽௫,௬ to the nonlinear part of the Hamiltonian, choosing Φ௫,௬ = 𝜙௫,௬, 
does not introduce this term. We will write just Φ௫,௬ for the sake of compactness but omit the 
terms Q∙J as they are not important for the following. 

The Hamiltonian now reads  

K = −
ଵ

ଵଶ

௘

௉

డீ(௭)

డ௭
(𝑥ଷ𝑥ᇱ + 3𝑦ଶ𝑥𝑥ᇱ + 𝑦ଷ𝑦ᇱ + 3𝑥ଶ𝑦𝑦ᇱ)+ higher order. (22) 

 Expressing  the Hamiltonian  K explicitly in the action and angle variables  𝐽௫,௬ , 𝜙௫,௬ using  

            𝑥 = ඥ2𝐽௫𝛽௫ cos(Φ௫),       𝑦 = ඥ2𝐽௬𝛽௬ cos൫Φ௬൯ 

𝑥ᇱ = −ඥ2𝐽௫/𝛽௫(𝛼௫cos(Φ௫) + s 𝑖𝑛(Φ௫)), 
  𝑦ᇱ = −ඥ2𝐽௬/𝛽௬൫𝛼௬cos൫Φ௬൯ + s 𝑖𝑛൫Φ௬൯൯ 

 

(23𝑎, 𝑏, 𝑐, 𝑑) 

 (𝛽௫,௬ are the lattice functions) and using 

𝜅ᇱ =
௘

௉

డீ(௭)

డ௭
,  (24) 

one obtains 

K= 
ଵ

ସ଼
𝐽௫

ଶ𝜅ᇱ𝛽௫ ቊ𝛼௫ ∑   
ସ!

రష೘

మ
!
రశ೘

మ
!

ସ
௠ୀିସ,ିଶ 𝑒௜௠஍ೣ + sin(Φ௫) ∑

ଷ!
యష೘

మ
!
యశ೘

మ
!

ଷ
௠ୀିଷ,ିଵ 𝑒௜୫஍ೣቋ 

+
3

48
𝐽௫𝐽௬𝜅ᇱ𝛽௬ ∙ (1 + cos൫2Φ௬൯) {𝛼௫(1 + cos(2Φ௫)) + sin( 2Φ௫)} 

(25) 
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+
ଵ

ସ଼
𝐽௬

ଶ𝜅ᇱ𝛽௬ ቊ𝛼௬ ∑
ସ!

రష೘

మ
!
రశ೘

మ
!

ସ
௠ୀିସ,ିଶ 𝑒௜௠஍೤ + sin൫Φ௬൯ ∑

ଷ!
యష೘

మ
!
యశ೘

మ
!

ଷ
௠ୀିଷ,ିଵ 𝑒௜୫஍೤ቋ 

+
3

48
𝐽௫𝐽௬𝜅ᇱ𝛽௫ ∙ (1 + cos(2Φ௫)) ൛𝛼௬(1 + cos൫2Φ௬൯) + sin൫ 2Φ௬൯ൟ 

+ higher order 
 

The amplitude dependent tune shift is obtained by expanding the Hamiltonian in Fourier  series 
and retaining only 0th order and terms that are independent on the phases Φ௫,௬  (corresponding to 
averaging the Hamiltonian over the phases) which implies  integrating over the fringe field 
region  which results in  

Δ𝑄௫൫𝐽௫ , 𝐽௬൯ =
ଵ

ଶగ
∫

ழడ௄வ

డ௃ೣ
𝑑𝑧,   Δ𝑄௬൫𝐽௫ , 𝐽௬൯ =

ଵ

ଶగ
∫

ழడ௄வ

డ௃೤
𝑑𝑧 (26) 

 The phase averaging results in elimination of all the terms that have a phase dependence, and 
one is left with ‘constant’ terms: 

< 𝐾 >థೣ,೤,೥
=

1

8𝜋
൫𝛽௫𝛼௫𝜅ᇱ𝐽௫

ଶ + 2 ∙ (𝛽௬𝛼௫ + 𝛽௫𝛼௬) ∙ 𝜅ᇱ𝐽௫𝐽௬ + 𝛽௬𝛼௬𝜅ᇱ𝐽௬
ଶ൯ 

(27) 

+ higher order 

The amplitude dependent tune shift terms are obtained by integrating over the fringe field region  

[-z0, +z0]: 

Δ𝑄௫൫𝐽௫, 𝐽௬൯ =
1

4𝜋
න 𝛽௫(𝑧)𝛼௫(𝑧)𝜅ᇱ(𝑧)𝑑𝑧

௭బ

ି௭బ

∙ 𝐽௫ +
1

4𝜋
න ൫𝛽௫(𝑧)𝛼௬(𝑧) + 𝛽௬𝛼௫൯ ∙ 𝜅ᇱ(𝑧)𝑑𝑧

௭బ

ି௭బ

∙ 𝐽௬ 

ΔQ𝑦൫𝐽௫ , 𝐽௬൯ =
1

4𝜋
න 𝛽௬(𝑧)𝛼௬(𝑧)𝜅ᇱ(𝑧)𝑑𝑧

௭బ

ି௭బ

∙ 𝐽௬ +
1

4𝜋
න ൫𝛽௫(𝑧)𝛼௬(𝑧) + 𝛽௬𝛼௫൯𝜅ᇱ(𝑧)𝑑𝑧

௭బ

ି௭బ

∙ 𝐽௫ 

 

(28) 

 Thus, the three detuning terms are 

𝑄௫௫ =
1

4𝜋
න 𝛽௫(𝑧)𝛼௫(𝑧)𝜅ᇱ(𝑧)𝑑𝑧

௭బ

ି௭బ

 

𝑄௬௬ =
1

4𝜋
න 𝛽௬(𝑧)𝛼௬(𝑧)𝜅ᇱ(𝑧)𝑑𝑧

௭బ

ି௭బ

 

𝑄௫௬ =
1

4𝜋
න ൫𝛽௫(𝑧)𝛼௬(𝑧) + 𝛽௬(𝑧)𝛼௫(𝑧)൯ ∙ 𝜅ᇱ(𝑧)𝑑𝑧

௭బ

ି௭బ

 

 

(29𝑎, 𝑏, 𝑐) 

6 Evaluation of Detuning Terms 

The beam optical functions are calculated using a hard-edge quadrupole model: constant gradient 
inside the quadrupole and zero gradient outside the hard edge. The error by using this model is 
small. Thus, the lattice functions outside the hard-edge border are given by: 

𝛽௫,௬(𝑧) =  𝛽௫଴,௬଴ − 2 ∙ 𝛼଴ ∙ (𝑧 − 𝑧଴) + (1 + 𝛼଴
ଶ)

(௭ି௭బ)మ

ఉೣబ,೤బ
   (30) 
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  where z0 is the hard-edge position. Inside the quadrupole, the-function is written using the 
quadrupole matrix and the generating trajectories 

 

 

𝑀௤(𝑧) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ cos (√−𝜅𝑧)

sin (√−𝜅𝑧)

√𝜅

−√𝜅 ∙ sin (√−𝜅𝑧) cos (√−𝜅𝑧)

0                 0
0                0

0                       0
0                       0

cosh (√𝜅𝑧)
sinh (√𝜅𝑧)

√𝜅

√𝜅 ∙ sinh (√𝜅𝑧) cosh (√𝜅𝑧)⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

(31) 

  

𝑢ሬ⃗ =

⎣
⎢
⎢
⎢
⎢
⎡ ඥ𝛽௫଴

−
ఈೣబ

ඥఉೣబ

ඥ𝛽௬଴

−
ఈ೤బ

ඥఉ೤బ⎦
⎥
⎥
⎥
⎥
⎤

        𝑣⃗ =

⎣
⎢
⎢
⎢
⎡

0
ଵ

ඥఉೣబ

0
ଵ

ඥఉ೤బ⎦
⎥
⎥
⎥
⎤

  

 

(32) 

The parameter 𝜅 is the quadrupole strength  
௘

௉

డ஻೤

డ௫
. Equation (31) is the matrix for a 

horizontally focusing magnet. For a vertically focusing magnet, the hyperbolic and trigonometric 
functions are interchanged. 

The lattice functions  are then given by 

𝛽௫,௬(𝑧) = ൫𝑀௤(𝑧) ∙ 𝑢ሬ⃗ ൯
଴,ଶ

ଶ
+ ൫𝑀௤(𝑧) ∙ 𝑣⃗൯

଴,ଶ

ଶ
 (29a) 

𝛼௫,௬(𝑧) = ൫𝑀௤(𝑧) ∙ 𝑢ሬ⃗ ൯
଴,ଶ

൫𝑀௤(𝑧) ∙ 𝑢ሬ⃗ ൯
ଵ,ଷ

+ ൫𝑀௤(𝑧) ∙ 𝑣⃗൯
଴,ଶ

൫𝑀௤(𝑧) ∙ 𝑣⃗൯
ଵ,ଷ

 

 
 

(33) 

The lattice functions for the fringe field are calculated by using 𝛽௫ = 0.9 𝑚, 𝛽௬ = 0.06 𝑚,

𝛼௫ = 0, 𝛼௬ = 0 in the interaction point IP-6 and by using the 𝜅 -value of the quadrupole Q1apf 

𝜅 = 0.0927 𝑚ିଶ. The resulting lattice functions in the fringe field region are plotted in Figure 4. 
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Figure 4: Lattice functions in the fringe field (IP side)  of the HSR final focus quadrupole Q1apf. 
Note that the discontinuity of 𝛼′ is due to the hard-edge optics model, an approximation which is 

expected to have only a minor impact. 

 

With  these parameters, the detuning values of the front end of Q1apf are obtained as  

𝑄௫௫ =
1

4𝜋
න 𝛽௫(𝑧)𝛼௫(𝑧)𝜅ᇱ(𝑧)𝑑𝑧

௭బ

ି௭బ

= 1.082 ∙ 𝑚ିଵ 

 

𝑄௬௬ =
ଵ

ସగ
∫ 𝛽௬(𝑧)𝛼௬(𝑧)𝜅ᇱ(𝑧)𝑑𝑧

௭బ

ି௭బ
=-296. 01 ∙ 𝑚ିଵ 

 

                          𝑄௫௬ =
1

4𝜋
න ൫𝛽௫(𝑧)𝛼௬(𝑧) + 𝛽௬(𝑧)𝛼௫(𝑧)൯𝜅ᇱ(𝑧)𝑑𝑧

௭బ

ି௭బ

= 10.14 ∙ 𝑚ିଵ 

 

(34𝑎, 𝑏, 𝑐) 

The corresponding amplitude dependent tune change for a particle a an amplitude of 3 sigma of 
the beam size is Δ𝑄௫ = 6.74 ∙ 10ି଺  and  Δ𝑄௬ = 2.038 ∙ 10ିହ.  As there are 12 end fields of the 
final focus magnets in the IR, these numbers are not necessarily negligible, especially the  𝑄௬௬ 
value. This requires a closer look at all the fringe fields in the IR region.  
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Figure 5: Sharply peaked integrands of the tuning terms Qxx, Qyy, and Qxy according to equations 
30a,b,c 

As the sharply peaked shapes of the integrands for the detuning terms (see Figure 5) are  due the 
z-dependent gradient 𝐺ᇱ(𝑧), and the lattice functions do not change strongly inside the fringe 
fields, a quasi-thin lens approximation is proposed. The integral 34b is divided by the peak 
values of the integrand  

𝑧௘௙௙ = න
𝛽௬(𝑧)𝛼௬(𝑧)𝜅ᇱ(𝑧)𝑑𝑧

𝛽௬(0)𝛼௬(0)𝜅ᇱ(0)
= 1.1 𝑐𝑚

௭బ

ି௭బ

 

 

(35) 

 and we obtain an effective fringe field width which turns out  zeff  = 1.1 cm 

 This approximation is employed  for a quick assessment of the order of magnitude of the 
contributions from all quadrupole end fields in the IR to the fringe-field driven detuning terms. 

7 Relevant Beam Optical Parameters in IR6 and Evaluation of the Quadrupole Fringe 
Field Detuning 

The table I below summarizes the contribution to the detuning terms from all HSR IR 
quadrupole. For each quadrupole there are two entries: the lattice function at the front and the 
ones on the rear site. Note that a change in aperture implies a longer fringe field region and a 
longer zeff. But at the same time G’ reduces as well and the product G’∙zeff is not expected to 
change. However, this is still a rather course approximation.  
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Table I: Summary of Approximate Detuning Term Contributions from all HSR Quadrupoles in 
the IR 

 

The detuning terms due to sextupole magnets in the HSR lattice have been computed by Y. Luo 
(7). The numbers are:  

𝜕𝑄௫

𝜕𝐽௫
= 545 𝑚ିଵ 

            
𝜕𝑄௫

𝜕𝐽௬
=  −2697.40 𝑚ିଵ 

       
𝜕𝑄௬

𝜕𝐽௬
= 158.64 𝑚ିଵ  

 

(37) 

 And the tune shift parameters corresponding to 1 unit of 10-4 of octupole errors at 25 mm radius 
in all HSR arc dipoles are around 2000 m-1[8]. 

From the detuning coefficients, the nonlinear tune shifts with amplitude are calculated according 
to equation (28) using for the HSR design values of  Jx = 6.25 nm and Jy = 0.63 nm. They are  
presented in Table II. The tune shift values from fringe fields and sextupoles are in the same 
order of magnitude. The sextupole induced tune shift values are about one order of magnitude 
larger than the detuning terms due to the fringe field. 
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Table II Comparison of Amplitude Dependent Tunes caused by lattice sextupoles in the HSR and 
the quadruple fringe fields in the HSR IR quadrupole magnets 

 

8 Conclusions 

The results in tables I and II are not threatening but they may not be negligible. The strength of 
the detuning suggests that the fringe fields should be considered in tracking calculation to ensure 
there is no problem, especially if the dynamic aperture is tight already without taking fringe field 
effects into account.  The thin lenses that are derived in this document could be used in tracking 
calculations, but it would be more reliable to use analytic expression for the lattice function and 
integrate over the fringe field region. 
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