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Study of Quadrupole Fringe Fields in the Interaction Region of the
Hadron Storage Ring of the Electron Ion Collider

F. Willeke, December 2025
1. Introduction

Fringe fields in quadrupole magnets are usually neglected in studies of beam dynamics at accelerators.
However, the extreme optical parameters present in the final focus of a collider such as the Electron—Ion
Collider (EIC) may give rise to effects that should not be overlooked.

The calculation of quadrupole fringe fields presented in this study follows the procedure outlined in Ref.
[1], specialized to the case of a straight reference orbit (i.e., with no dipole field component). A right-
handed Cartesian coordinate system is employed, with the z-axis aligned with the quadrupole axis and

x and y denoting the horizontal and vertical transverse coordinates, respectively. The magnetic
quadrupole field gradient, G = dB,,/ dx, transitions from its peak value inside the quadrupole—where it
is nearly independent of the longitudinal coordinate z—to zero at some distance beyond the magnet edge.
Consequently, Gis treated as a function of z. The region over which this variation occurs is defined as the
quadrupole fringe field region.

The study begins with the development of a description of the magnetic field in the fringe region using a
power-series expansion in the transverse coordinates xand y, consistent with the longitudinally varying
gradient. A model for the z-dependence of the gradient is then proposed and adjusted to reproduce
magnetic field data obtained from three-dimensional field calculations. To evaluate the impact of the
fringe fields on beam dynamics, the corresponding vector potential is derived and incorporated into a
Hamiltonian formulation of particle motion.

The significance of the fringe fields is quantified by calculating the amplitude-dependent tune shift from
the Hamiltonian. Using linear beam optics parameters of the Hadron Storage Ring (HSR) of the EIC, the
tune shift due to the fringe fields of all quadrupole magnets in the IR-6 interaction region is evaluated.
Finally, the resulting tune shifts are compared with those arising from other nonlinear field components
present in the HSR.

2 Magnetic Field in the Fringe Region of a Quadrupole Magnet

The static magnetic field in a region where the current density is zero, can be described by the gradient of
a scalar potential ®(x,y,z):

B=Vd(xy,z2) 1
subject to the condition
VB=0. (2)

This constraint immediately implies that the scalar potential satisfies the Laplace equation

AD = 0. 3)



To capture the detailed spatial structure of the field—especially its gradual longitudinal variation in the
fringe region—the scalar potential ®(x, y, z) is expanded as a power series in the transverse coordinates
x and y, evaluated at each longitudinal position z along the straight reference trajectory through the
magnet center:

xnym (4)

nlm!’

&(x,y,z) = 2 Cn,m(z)

n+m>0

This expansion expresses the magnetic field as a hierarchy of multipole components whose
strengths evolve smoothly along the longitudinal axis.

Substitution of this series into the Laplace equation yields a recursion relation that tightly couples
the longitudinal dependence of the expansion coefficients to their transverse order:

Cry2m(2) + Comy2(2) + C"m(2)=0 (5)
where the prime denotes differentiation with respect to z.

The magnetic field itself follows directly from the gradient of the scalar potential,

®© Cn+1,m(z) xnym (6)
B=V®&(x,y,z2)= z Crm+1(2) pypey
n+m>0 C'n,m(z) T

It is assumed that the dipole fields are zero and there are only fields with midplane symmetry:

Ci0 = Bx(0,0,2) =0, Co; = B,(0,0,2) =0, C1; =G(2), C0=0, Co2=0, Coo=0 ™

We also verify that V xXB=0

0By _ x"y™ 0By _ xty™ 8a,b,c
a_yx = Ymrm>0 Cn+1,m+1(Z)' e a_; = Ynmrm>0 Crsim+1(2) "l (8a,b,¢)
9B xnym 0B xMy™m
a_yz = Z?lo+m>0 C,n,m+1(z) T Taml = a_zy = Z?lo+m>0 C,n,m+1(Z) Tom
0B xMym 0B xy™
a_zx = Z?lo+m>0 C’n+1,m(Z) Tl = a_xz = Z?zo+m>0 C,n+1,m(Z) R—
One identifies the coefficients C,,, as
"B, c d™B, 0"B, 0™B, 9
n1l — axn ) 1im — aym ) n+1,0 — axn ) om+1 — aym
In particular, there is
C11(2) = 0By(x =0,y =0,z) 0B,(0,0,2z) 62 (10)
1,1 ox dy '

Having this in mind, one can construct the power series for the magnetic field in the fringe field region:
Using the recursion relation, equation (5) we put

—C"11= C31+Cy3. (11)

By preserving x-y symmetry of the quadrupole field, By(x,y) = By (y, x), we obtain
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C3,1=C1,3=—§'C 1,1=—5'G’ (12)

The symmetry argument is used also to determine the next order coefficients by employing the recursion
relation equation (4):

" 1 mnrr 13a,b,C
—C 3,1=§'G = (51 + (33 ( )

1
_C”Lg — E' GHII — C3’3 + C1'5

This results in the following expressions for the transverse magnetic field in the fringe field region up to
5™ order in the coordinates:

n

G nr
By =G(2)'y — = O*+3x%y) + - G""- (5x*y + 10~ x?y° + y°)

2 (14a,b,c)
48

1

B., = G(Z) X — G_ (x3 + 3y2x) +i GHII ) (5y4x +10- x3y2 +x5)
Y 12 480

1
B, =G (xy) =15 G Py +xy%)

Note that this construction of the field implies VE=0andVxB =0

For the vector potential A that from which the magnetic field described by (equations 14) is

derived by B=Vx4,a gauge field that preserves the symmetry in the x and y coordinates is
chosen:

- Gl 1 T 15
—E'(x3 +3)’2x)+ﬁ-6'”-(5y4x+10-x3y2 + x°) (15

!

1 G 1 "
v E-(y3+3x2y)—ﬁ-6 - (5x*y + 10 - x%y3 + y°)

1
5 6@ (2%

N
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3 Fringe Fields of the Final Focus Quadrupoles in the Interaction Region for
the Hadron Storage Ring of the EIC

The following is based on the 3D design of the EIC IR final focus quadrupole magnets. The
quadrupole gradient on the design orbit in the fringe field region has been calculated using a
numerical 3D field calculation [5] with appropriate magnet field calculation computer codes.
Figure 1 shows the numerical data of the quadrupole field gradient G for x =y = 0 as a function
of the pathlength of the straight design orbit z that passes through the center of the magnet.



Figure 1a shows the gradient over the entire magnet and Figure 1b shows only the fringe field
region.
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Figure 1: Results of the numerical magnetic field calculation for the quadrupole magnet QIpf of
the HSR in the EIC IR. Figure la shows the entire length of the magnet, Figure 1b shows only
the fringe field region. (Curtesy Anis Ben Yaya see ref (5)). Note that the gradient is symmetric
around the magnet longitudinal center.
The data in the fringe field region are modeled by an Enge-function [6], Gmodel as
— 1 (16)
Gmodel(2) = Go -

—n
1+exp(1+2%=1(zAZO) )

and the parameters of this function are adjusted to minimize the mean square difference between
the modeled function and the results of the numerical magnetic field calculation. The parameters
are:

G0=332.14 T/m; zo=131.212 mm; A; =238.223 mm, A>=151.143 mm, A3=318.493 mm,
A4=325.300 mm, z = zo corresponds to the hard edge position of the quadrupole.

The result of fitting Gmodel function is compared with the numerical data in Figures (2,3).
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Figure 2: Comparison of numerical data with the model function of the quadrupole gradient of
the magnet Qlpf'in the fringe field region
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Figure 3 Comparison of the first (a) and second (b) derivative of the numerical and modeled
quadrupole gradients G with respect to z in the fringe field region of quadrupole Q1pf.

Figures 1 and 2 show that the quadrupole gradient in the fringe field region is reasonably well
described at a function of z by the model function Gmodel.

4 Beam Dynamics Assessment

The full assessment of the beam dynamics impact of the quadrupole fringe fields can only be
evaluated by inserting the fringe field description in a particle tracking code. The purpose of this
note, however, is to determine whether the impact of fringe fields is important compared to the
other nonlinear fields in the accelerator. For this reason, in the following, the leading amplitude
dependent tune shift (referred to as detuning term) is determined and compared with the tune
shift resulting from sextupole magnets. The first step of the assessment is to write the
Hamiltonian

H = \/mgc‘* +c2-(py —eAy)? +c?-(py —eAy)? +c?- (p, — eA,)? @
(px, Py, and p; being the canonical momenta, and H = E = constant). In the usual accelerator
coordinate system with the pathlength along z as the independent variable, the longitudinal
momentum p, becomes the Hamiltonian

18
p, =K = \/HZ —mict 4+ c? - (py —edy)? +c?- (py —eAy)? + eA, (18)

which leads to

19
K=P\/1+a2-(x'—%)z+c2-(y'—”%eAy)2+%(18) (9



. . Px,
where cP = \/H? —mgc* is the total mechanical momentum and x',y’ = =*.

Since all quantities under the square root besides 1 are small compared to unity, the square root
is expanded to first order. Neglecting the constant term and using the vector potential of equation
15, we obtain the final form of K by limiting to leading terms (thus, terms of order >4 in the
coordinates are neglected) for further analysis :

__ 12 1,2 1 e, C(v2 — 42y 1206@) 3 200! 4 30 (20)
K SX Sy 2PG(Z) (y* —x°) 57 or (x°x" + 3y“xx" +y°y" +
3x%yy")
+higher order terms

The next step is expressing K in action J and angle @ variables which removes the linear part

1 1 1 e 21
_Exlz_Exlz_E_F_G(Z)_(yZ_xZ) ( )

from K. Note that the linear optic uses the quadrupole strength inside the magnet and a
quadrupole length that is obtained by integrating the gradient G(z) over z and dividing by the
gradient inside the magnet. Thus, the quadrupole gradient component the fringe field is already
taken into account in the linear optics in reasonable approximation.

Note also that there is a difference in the choice of angle variable: choosing @, ,, = ¥, (2) +
¢y, adds the terms Q.  Jx, to the nonlinear part of the Hamiltonian, choosing @, ,, = ¢, ,,,
does not introduce this term. We will write just @, ,, for the sake of compactness but omit the
terms Q-J as they are not important for the following.

The Hamiltonian now reads

K= _%Eag_(zz) (x3x" + 3y2%xx’ + y3y' + 3x2yy’)+ higher order. (22)
Expressing the Hamiltonian K explicitly in the action and angle variables Jy ,, ¢y, using
X =4 2] By cos(Dy), y= ijﬂy COS(CDy) (23a,b, ¢, d)
x' = — 2]x/ﬁx(axcos(q)x) + sin(d,)),
' ==\2)y/By(aycos(®,) +sin(®,))
(Bx,y are the lattice functions) and using
o = e 9G(2) 24)

)

TP dz
one obtains

25)
_ 1 .5 4 4! imad . 3 3! imad (
K_E xklﬁx {ax Zm=—4,—2 '4—m|4+m'elm * +Sln(q)x) 2m=—3,—1ﬂ,ﬂ,elm x

2 2 2 o2

+%]x]y1€'ﬁy (1 + cos(ZCDy)) {a,(1+ cos(2d,)) + sin( 2d,)}



120 4 4! im® ; 3 3! im®
+E]yK ﬁy {Oly Zm=—4,—2 T=m, aFm, e Y+ sm(dDy) Zm=—3,—1 5=m 3+, e Y
P z 2

3
+E]x]yrc’,8x (14 cos(29,)) {ay(l + cos(ZCDy)) + sin( ZCDy)}
+ higher order

The amplitude dependent tune shift is obtained by expanding the Hamiltonian in Fourier series
and retaining only 0" order and terms that are independent on the phases @ x,y (corresponding to
averaging the Hamiltonian over the phases) which implies integrating over the fringe field
region which results in

<0K>

80x(Juy) = 5 f 5,7z 80y (I dy) = 5.0 55 = dz (26)

The phase averaging results in elimination of all the terms that have a phase dependence, and
one is left with ‘constant’ terms:

1 172 ! 172 (27)
<K >¢x,y,z: g(ﬁxax’c Jx +2- (ﬁyax + :Bxay) K ]x]y + ﬁyay’c ]y)

+ higher order

The amplitude dependent tune shift terms are obtained by integrating over the fringe field region

[-Z0, +20]:
1 (% 1 (% 28
80(ly) = 3= [ B @iz fot = [ (B @y +Ba) Kz, A
1 ZOO 1 é)0
8 (ey) =47 | Byt @K@z Ty + 4 | (Be@ay@) + Bya)k )z Iy
Thus, the three detuning terms are
(29a, b, )

1 (% ,
Qxx = EJ- Bx(2)ax(2)Kk'(2)dz

-7
Zo

1
Oy =53] By(@ay(2)xr'(2)dz

—Zy

Quy = %fzo (ﬁx(z)ay(z) + ﬁy(z)ax(z)) Kk'(2)dz

-2

6 Evaluation of Detuning Terms

The beam optical functions are calculated using a hard-edge quadrupole model: constant gradient
inside the quadrupole and zero gradient outside the hard edge. The error by using this model is
small. Thus, the lattice functions outside the hard-edge border are given by:

(z—2)?
Buey(@ = Broyo— 2" a0 (2= 20) + (1 +ad) =2 (30)

X0,y0



where 7z is the hard-edge position. Inside the quadrupole, the -function is written using the
quadrupole matrix and the generating trajectories

in(v— ] (31)
cos(vV—kz) Sm(—KZ) 0 0
Vie 0 0
M, (z) = —Vk - sin(vV—kz) cos(vV—kz)
1 sinh(vkz2)
0 0 cosh(vkz) ——
0 0 Vic
Vi - sinh(v/kz) cosh(vkz)]
S el (32)
ﬁxo r 0 7
o v Bxo S VBxo
u= v =
I 0
Y0 1
ayo
- L/ Byo-
L 1/ ﬁyo_
e 0By
The parameter K is the quadrupole strength P ox Equation (31) is the matrix for a

horizontally focusing magnet. For a vertically focusing magnet, the hyperbolic and trigonometric
functions are interchanged.

The lattice functions are then given by

Bry(2) = (My(2) - 17)(2),2 + (M, (2) - 13)2’2 (29a) (33)
ey (2) = (Mg(2) - 1), (Mg (@) - 1), , + (Mo(2) - ¥),(Mq(2) - D), ,

The lattice functions for the fringe field are calculated by using g, = 0.9 m, g, = 0.06 m,
a, = 0, a, = 0 in the interaction point IP-6 and by using the k -value of the quadrupole Qlapf
k = 0.0927 m™2. The resulting lattice functions in the fringe field region are plotted in Figure 4.
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Figure 4: Lattice functions in the fringe field (IP side) of the HSR final focus quadrupole Qlapf.
Note that the discontinuity of &' is due to the hard-edge optics model, an approximation which is
expected to have only a minor impact.

With these parameters, the detuning values of the front end of Q1lapf are obtained as

1 (34a,b,¢)

EJ.ZO Bx(2)ay(2)k'(z)dz = 1.082 - m™

-2z

Qux =
Quy = =17 By(2)ay (2) (2)dz=-296.01 - m~!

Quy = ﬁfzo (Bx(2)ay (2) + By (2)ay(2))K'(z)dz = 10.14 - m™?

-2y

The corresponding amplitude dependent tune change for a particle a an amplitude of 3 sigma of
the beam size is AQ, = 6.74-107° and AQ, = 2.038 - 107>, As there are 12 end fields of the
final focus magnets in the IR, these numbers are not necessarily negligible, especially the @,
value. This requires a closer look at all the fringe fields in the IR region.
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Figure 5: Sharply peaked integrands of the tuning terms Qxx, Qyy, and Qxy according to equations
30a,b,c

As the sharply peaked shapes of the integrands for the detuning terms (see Figure 5) are due the
z-dependent gradient G’ (z), and the lattice functions do not change strongly inside the fringe
fields, a quasi-thin lens approximation is proposed. The integral 34b is divided by the peak
values of the integrand

By (K (dz 35)
s = ) @,

and we obtain an effective fringe field width which turns out zer = 1.1 cm

This approximation is employed for a quick assessment of the order of magnitude of the
contributions from all quadrupole end fields in the IR to the fringe-field driven detuning terms.

7 Relevant Beam Optical Parameters in IR6 and Evaluation of the Quadrupole Fringe
Field Detuning

The table I below summarizes the contribution to the detuning terms from all HSR IR
quadrupole. For each quadrupole there are two entries: the lattice function at the front and the
ones on the rear site. Note that a change in aperture implies a longer fringe field region and a
longer z.fr. But at the same time G’ reduces as well and the product G’-zefr is not expected to
change. However, this is still a rather course approximation.
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Table I: Summary of Approximate Detuning Term Contributions from all HSR Quadrupoles in

the IR
NAME L KL By By Oy oy k G'(0)/G k'(0) Qxx Qxy Qyy
[m] [m™] [m] [m] [m] [m] m?  [/m] i [m”] [m"] [m™] [m™]
YI6_QD2-in 3.3916 0.10957 873.94 65.42 -109.68 4.86 0.03231 9.493 -0.307 25.7 0.8 -0.1
Yl6_QD2 3.3916 0.10957 1300.06 56.01 0.01 -1.75 0.03231 ¢ 9.4930 0.3067 0.0023 -0.6111 : -0.0263
Q3PF-in 0.7500 0.00790 1300.14 168.87 -0.01 -3.34 0.01054 § 9.4930 -0.1001 0.0012 0.3807 0.0494
Q3PF 0.7500 0.00790 1292.46 174.94 10.23 -4.78 0.01054 i 9.4930 0.1001 1.1576 -0.3839 | -0.0732
Q2PF-in 3.8000 0.14291 890.43 443.52 8.47 -7.68 0.03761 : 9.4930 -0.3570 : -2.3561 0.9644 1.0649
Q2PF 3.8000 0.14291 445,83 815.54 86.54 -107.33 | 0.03761 : 9.4930 0.3570 : 12.0579 i 7.1031 :-27.3544
Q1BPF-in 1.6100 -0.08443 379.11 903.89 79.80 -112.99 : -0.05244 : 9.4930 0.4978 13.1840 i 12.7666 : -44.5063
Q1BPF 1.6100 -0.08443 197.69 1153.24 37.94 -34.80 :-0.05244: 9.4930 -0.4978 ;| -3.2686 i -16.0704 : 17.4860
Q1APF-in 1.4600 -0.13225 168.43 1181.28 35.02 -35.22 | -0.09058: 9.4930 0.8599 4.4401 : 26.6767 | -31.3131
Q1APF 1.4600 -0.13225 103.71 1059.70 12.12 113.06 {-0.09058: 9.4930 -0.8599 { -0.9462 i -18.4946 : -90.1835
Q1APR-in 1.8000 -0.14774 35.91 390.21 -6.63 -73.61 :-0.08208: 9.4930 0.7791 -0.1623 : -3.5661 i -19.5905
Q1APR 1.8000 -0.14774 79.07 556.93 -19.44 -10.65 { -0.08208: 9.4930 -0.7791 1.0484 7.9585 4.0453
Q1BPR-in 1.4000 -0.11491 99.71 567.63 -21.84 -10.75  -0.08208 : 9.4930 0.7791 -1.4850 i -9.1849 | -4.1628
Q1BPR 1.4000 -0.11491 194.45 508.47 -49.43 50.72 -0.08208 : 9.4930 -0.7791 6.5547 10.4140 i -17.5887
Q2PR-in 4.5000 0.12866 371.00 367.70 -68.28 43.13 0.02859 | 9.4930 { -0.2714 i 6.0181 2.1633 -3.7675
Q2PR 4.5000 0.12866 806.93 192.54 -9.14 3.04 0.02859 i 9.4930 0.2714 -1.7517 0.1639 0.1388
Q3PR-in 1.5000 0.00897 1282.66 80.98 -11.55 1.82 0.00598 i 9.4930 -0.0567 0.7357 -0.0692 : -0.0073
Q3PR 1.5000 0.00897 1300.05 76.70 0.01 1.05 0.00598 i 9.4930 0.0567 0.0004 0.0679 0.0040
QA4PR-in 1.5000 0.03931 1300.05 49.84 -0.01 0.61 0.02621 : 9.4930 -0.2488 0.0018 -0.1717 ; -0.0066
Q4PR 1.5000 0.03931 1224.90 51.01 49.12 -1.40 0.02621 i 9.4930 0.2488 : 13.1025: 0.1720 -0.0156
Q5PR-in 1.5000 -0.08605 25.48 137.32 7.01 -2.63 -0.05737 i 9.4930 0.5446 0.0852 0.4272 -0.1722
Q5PR 1.5000 -0.08605 10.64 127.69 3.30 8.77 -0.05737: 9.4930 -0.5446 : -0.0167 i -0.2454 : -0.5337
YI6_TQ4-in 0.7500 0.03895 26.12 28.84 -5.31 4.07 0.05193 i 9.4930 -0.4930 0.0599 0.0202 -0.0507
YI6_TQ4 0.7500 0.03895 33.81 23.81 -4.83 2.70 0.05193 | 9.4930 0.4930 -0.0705  -0.0102 i 0.0278
SUM 74.1252 21.2561 -216.6213

The detuning terms due to sextupole magnets in the HSR lattice have been computed by Y. Luo
(7). The numbers are:

00y

0
00y

3],
99y
o],

545 m~1

—2697.40m™1

158.64m™!

(37)

And the tune shift parameters corresponding to 1 unit of 10 of octupole errors at 25 mm radius
in all HSR arc dipoles are around 2000 m™'[8].

From the detuning coefficients, the nonlinear tune shifts with amplitude are calculated according
to equation (28) using for the HSR design values of Jx = 6.25 nm and Jy = 0.63 nm. They are
presented in Table II. The tune shift values from fringe fields and sextupoles are in the same
order of magnitude. The sextupole induced tune shift values are about one order of magnitude
larger than the detuning terms due to the fringe field.
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Table Il Comparison of Amplitude Dependent Tunes caused by lattice sextupoles in the HSR and
the quadruple fringe fields in the HSR IR quadrupole magnets

Fringe Field Sextupole
Contribution Contribution
[1077] [105]
AQ, 0.048878955 0.6659
AQy -0.133487447 1.7127528

8 Conclusions

The results in tables I and II are not threatening but they may not be negligible. The strength of
the detuning suggests that the fringe fields should be considered in tracking calculation to ensure
there is no problem, especially if the dynamic aperture is tight already without taking fringe field
effects into account. The thin lenses that are derived in this document could be used in tracking
calculations, but it would be more reliable to use analytic expression for the lattice function and
integrate over the fringe field region.
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