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1 Nomenclature

The detuning coefficients κxx, κxy, and κyy are defined in general by the equations

Qx(Jx, Jy) = Qx0 + κxx ⟨Jx⟩ + κxy ⟨Jy⟩ (1)

Qy(Jx, Jy) = Qy0 + κxy ⟨Jx⟩ + κyy ⟨Jy⟩

in a linear approximation that is valid when the average horizontal and vertical actions ⟨Jx⟩ and ⟨Jy⟩ are
small. The coefficients have the dimensions of inverse length, since action has the dimension of length. At
a location with horizontal Twiss functions βx, αx, and γx the turn-by-turn physical horizontal phase space
co-ordinates are

x =
√
2Jxβx sin(ϕx) (2)

x′ =
√

2Jx/βx [cos(ϕx)− αx sin(ϕx)]

where the horizontal phase ϕx advances by an average of 2πQx each turn. The horizontal action Jx on one
particular turn is derived from the physical co-ordinates through the equation

2Jx = βx x
′2 + 2αx xx

′ + γx x
2 (3)

Normalized phase space co-ordinates xn and x′
n are related to physical co-ordinates through the Floquet

transformation (
xn

x′
n

)
=

(
1/
√
βx 0

αx/
√
βx

√
βx

)(
x
x′

)
(4)

which shows that both have the dimensions of root length. The normalized amplitude is therefore

an [m1/2] =
√
2J (5)

and the physical amplitude is
ap [m] =

√
β an =

√
2Jβ (6)

either horizontally or vertically.
The values of the detuning coefficients depend on the strengths of nonlinear magnets – primarily sex-

tupoles and octupoles. In octupole-dominated lattices the coefficients can be derived by first order per-
turbation theory [1]. However, sextupoles are always powered in RHIC and the HSR, in order to control
chromaticity. Further, sextupole harmonics must be included in the arc dipoles of RHIC and HSR, if accu-
rate results are required. Second (and higher) order perturbation theory is required to quantify sextupolar
detuning. In practice accurate detuning coefficients must be derived from tracking data analysis [2].

The RHIC online model and MAD-X use the same convention to quantify the local octupole strength,
namely

K3 [m−4] =
1

(Bρ)

d3By

dx3
(7)

where the vertical field at displacement x is

By =
1

6

d3By

dx3
x3 (8)

Equations 7 and 8 show that
d3By

dx3
[Tm−3] =

6

(0.025)3
B25 [T] (9)

where B25 is the vertical field at a displacement of 25 mm. The integrated geometric octupole strength is

K3.L [m−3] =
L

(Bρ)

d3By

dx3
[m−3] (10)

at a given rigidity, or

K3.L [m−3] = 3.84× 105
L

(Bρ)
B25[T] (11)
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Table 1 lists the operating parameters of the octupoles and other arc correctors in RHIC [3]. The effective
length and B25 values listed there yield a bipolar integrated strength range of

(K3.L)range = ±3.728× 103

(Bρ)
[m−3] (12)

For example, EIC gold rigidities at injection (10 GeV/u) and top storage energy (110 GeV/u) are (Bρ) =
82.8 Tm and 914.8 Tm, respectively, with octupole strength ranges of

(K3.L)range = ±45.02 [m−3] injection (13)

= ± 4.08 [m−3] storage

Multipole Inductance Operating B-field at Effective Quench
current 25 mm B25 length current

mH A T m A

Decapole 5 59.0 0.016 0.575 202
Octupole 8 50.6 0.017 0.571 198
Quadrupole 29 49.8 0.067 0.555 190
Dipole 840 52.2 0.596 0.508 160

Table 1: RHIC arc corrector parameters [3]. All corrector power supplies are bipolar.
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2 Octupoles in RHIC and HSR

A total of 90 octupoles are currently powered in RHIC, 45 apiece at D and F locations, as shown in Figure 1.
Their approximate FODO Twiss values are

(βx, βy) ≈ (10, 50) [m] D (14)

(βx, βy) ≈ (50, 10) [m] F

The 24 F and D power supplies (see Figure 1) that drive them are independent, but for simplicity it is
assumed here that all ND and NF octupoles at D and F locations have integrated strengths of KD and
KF [m−3]. In that case, and if octupoles dominate, the three detuning coefficients are [1]

κxx =
1

16π

(
ND

〈
β2
x

〉
D
.KD +NF

〈
β2
x

〉
F
.KF

)
(15)

κxy =
−2

16π

(
ND ⟨βxβy⟩D .KD +NF ⟨βxβy⟩F .KF

)
κyy =

1

16π

(
ND

〈
β2
y

〉
D
.KD +NF

〈
β2
y

〉
F
.KF

)
The octupole Twiss averages listed in Table 2 for a RHIC gold injection lattice are reasonably close to the
FODO values of 100, 500, and 2500 [m2] that are predicted by Equation 14.

Parameter Units Value

Horizontal base tune, Qx 28.2340
Vertical base tune, Qy 29.2282
Horizontal chromaticity -5.0
Vertical chromaticity -5.0
Number of D octupoles, ND 45
Number of F octupoles, NF 45
Octupole average

〈
β2
x

〉
D

m2 162
⟨βxβy⟩D m2 538〈
β2
y

〉
D

m2 2142〈
β2
x

〉
F

m2 2205
⟨βxβy⟩F m2 517〈
β2
y

〉
F

m2 151

Table 2: Optical parameters for the RHIC lattice Au25-100GeV-qgt24::injection that is used for injection
calculations in this note. The FODO values predicted by Equation 14 are 100, 500, and 2500 [m2].

Energy Octupole Detuning coefficient ranges
& optics count κxx κxy κyy

103m−1 103m−1 103m−1

injection 137 ±179.1 ±207.8 ±287.5
storage 137 ±19.7 ±24.0 ±29.4

Table 3: The HSR injection and storage optics are hi-n-inj-101723-proton.bmad and hi-n/275-10-
collision/hsr.bmad, with the layout git#17e7f5e69c010f93d5be9cf027e71bec2495beed. The 3 detuning co-
efficients are not independent, and so (for example) the peak positive values of κxx and κxy can not be
reached simultaneously, because of the minus sign in Equation 15.

Table 3 records the extreme ranges of the detuning coefficients in the sample HSR lattice
git#17e7f5e69c010f93d5be9cf027e71bec2495beed, under the assumption that all power supplies are turned
at full strength, as defined by Equation 13. The octupole count of 137 in the lattice is larger than in RHIC
despite the removal of 19 octupoles from IR2 and IR6, because it assumes that all octupoles – both arc and
triplet – are powered.
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Figure 1: Octupoles and their power supplies in RHIC. Top: IRs 2, 6 and 10. Bottom: IRs 4, 8 and 12.
There are also 2 unpowered octupoles – one D and one F – in each of the 12 triplets.
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3 Independent control of κxx and κxy

Switching to matrix notation Equation 15 is rewritten as κxx

κxy

κyy

 = D3×2

(
KD

KF

)
+

 κxx

κxy

κyy


OFFSET

(16)

where the OFFSET vector is usually dominated by sextupoles, and is therefore a nonlinear function of the
2 chromaticities (for a given correction scheme) and the sextupole field components in the arc dipoles. The
matrix elements of the 3× 2 octupolar detuning matrix D3×2

D3×2 =

 D11 D12

D21 D22

D31 D32

 (17)

are

D11 = (ND/16π)
〈
β2
x

〉
D

(18)

D21 = (−2ND/16π) ⟨βxβy⟩D
D31 = (ND/16π)

〈
β2
y

〉
D

D12 = (NF /16π)
〈
β2
x

〉
F

(19)

D22 = (−2NF /16π) ⟨βxβy⟩F
D32 = (NF /16π)

〈
β2
y

〉
F

Since with 2 free variables (KD and KF ) only 2 detuning coefficients can be set – say κxx and κxy – the
situation reduces to a 2× 2 matrix equation(

κxx

κxy

)
= D

(
KD

KF

)
+

(
κxx

κxy

)
OFFSET

(20)

which is solved for goal detuning values by inverting the D matrix(
KD

KF

)
= D−1

[(
κxx

κxy

)
GOAL

−
(

κxx

κxy

)
OFFSET

]
(21)

It’s not prima facie obvious that sextupoles can be ignored, but it turns out that the OFFSET vector is
relatively small in RHIC, even for modest values of KD and KF . See Section 5.
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4 Results – theory

Figure 2 shows the area in (κxx, κxy) space that is predicted to be accessible by two quantitative models:

1. with the simple FODO values of Equation 14, and

2. using the accurate Twiss averages listed in Table 2

Table 4 lists the detuning coefficient values at the four corners of the green parallelogram [4].

D-strength KD F-strength KF Theory κxx Theory κxy

m−3 m−3 m−1 m−1

-45.0 -45.0 -95400 85041
45.0 -45.0 -82341 -1693
-45.0 45.0 82341 1693
45.0 45.0 95400 -85041

Table 4: Detuning coefficient values κxx and κxy at the four corners of the green parallelogram shown in
Figure 3. These values come from octupole-dominated theory [1], independent of tracking.
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Table 2 optical averages

Accessible detuning range at RHIC injection, theory   251204

Figure 2: The area in (κxx, κxy) space that is theoretically predicted to be accessible in RHIC at injection.
The theory does not include sextupolar (OFFSET) terms, which turn out to be negligible. Approximate
FODO optics predictions are quite similar to the accurate predictions.
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5 Results – tracking

Figure 3 compares theoretical prediction with Sparks [2] tracking results for Qx versus ⟨Jx⟩ with octupoles
on (top) and off (bottom). The solid and dashed colored lines are in excellent agreement, showing both that
the predictions are accurate (for modest actions), and also that the sextupoles play a negligible role.
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Figure 3: Horizontal tune versus average horizontal action, as measured by the tracking code Sparks [2].
Top: octupoles ON with strengths corresponding to the four corners of the green parallelogram in Figure 2,
with stability up to a dynamic action of about JDA ≈ 2.5 microns.
Bottom: octupoles OFF, still with chromatic sextupoles and arc dipole sextupole components turned on,
with a dynamic action about 2 orders of magnitude larger, with JDA ≈ 270 microns.

The vertical and horizontal scales of the top and bottom plots in Figure 3 are very different. Purely
horizontal motion (with no longitudinal motion or ∆p/p offset) is stable up to a dynamic action JDA of only
about 2.5 microns when the octupoles are on at full strength. The dynamic action increases to about 270
microns when the octupoles are turned off, leaving only the chromatic sextupoles turned on, as well as the
contributions from sextupole harmonics in arc dipoles. Turning octupoles on at full strength reduces this
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crude measure of dynamic aperture by about 2 orders of magnitude.
The natural action scale is the unnormalized RMS emittance ϵu, since by definition

ϵu ≡ ⟨J⟩ρ (22)

where the average ⟨⟩ρ is taken over the beam distribution ρ(J). For example, if the normalized RMS
emittance is

ϵn = 2× 10−6 [m] (23)

at an injection Lorentz gamma of
γ = 10.52 (24)

then the unnormalized emittance is

ϵu =
ϵn
γ

≈ 0.19× 10−6 [m] (25)

With a modest detuning value of about 10% of the accessible range

κxx = 1× 104 [m] (26)

a typical 1σ particle has a horizontal tune shift of about

∆Qx = κxxϵu ≈ 0.002 (27)

and an Nσ particle has
∆Qx ≈ 0.002×N2 (28)

which easily becomes significantly large.
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