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Abstract
This paper discusses the implementation of the One-Turn

Delay Feedback (OTFB) for the Electron-Ion Collider (EIC).
The theory of the OTFB is well documented, therefore, this
paper will mainly discuss the details of the implementation.
After a short introduction, the paper will discuss the building-
blocks of the OTFB, simulation testing of the OTFB, and
finally hardware validation of the OTFB.

INTRODUCTION
The background and theory of the OTFB has been ex-

tensively covered by others [1, 3], and for this reason, the
focus of this paper is mainly on the specific implementation
details. Conceptually, while the direct feedback lowers the
effective cavity impedance around the RF frequency, the
OTFB lowers the effective cavity impedance at revolution
frequency harmonics around the RF frequency (specifically,
at the synchrotron and betatron sidebands around the rev-
olution frequency harmonics). The OTFB is made of two
main components, the comb filter and the delay line. The
comb filter is responsible for actually providing gain at the
revolution harmonics. The delay line is needed to adjust the
phase of the drive signal to maintain stability. An effective
implementation of the OTFB also requires more capabil-
ities. Firstly, the harmonic peaks of the comb filter must
be adjustable to account for variations in the revolution fre-
quency. Secondly, the filter must be able to provide gain at
arbitrary offsets from the rev-lines to effectively lower the
cavity impedance at the synchrotron and betatron sidebands.

The paper then briefly touches on how these components
were tested using simulations prior to being put on hardware.
Finally, the paper discusses results with the OTFB on hard-
ware including the setup procedure and the performance of
the feedback.

DIGITAL IMPLEMENTATION
The OTFB is implemented in VHDL and the initial ver-

sion was tested on the Xilinx Vertix-5 FPGA. Like the tradi-
tional direct feedback loop (using the PID), the OTFB must
be applied to both I and Q data.

Biquad Filter
The transfer function and frequency response of a standard

feedback comb filter is shown below:

𝐻 (𝑧) = 1 − 𝛼

1 − 𝛼 · 𝑧−𝐷 (1)
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Figure 1: Basic comb filter response

The numerator normalizes the gain of the filter to 1 at the
poles. The coefficient D is a delay parameter of the comb fil-
ter. The coefficient 𝛼 determines the bandwidth of the peaks,
with the response becoming more narrow as 𝛼 approaches
1. The basic principle of the filter is that repeating poles of
the transfer function leads to gain at harmonic frequencies,
and the fundamental frequency is related to the sampling
frequency by:

𝐹 𝑓 =
𝐹𝑠

𝐷
(2)

While this configuration will apply gain at the revolution
harmonics, the transfer function must be modified slightly
to apply gain at synchrotron/betatron sidebands. This can
be achieved by shifting the poles via multiplication by a
complex exponential. The new transfer function is shown
below:

𝐻 (𝑧) = 1 − 𝛼

1 − 𝛼 · 𝑧−𝐷 · 𝑒− 𝑗 𝜙
(3)

This has an elegant interpretation when one looks at the
pole-zero plot of the filter. Multiplying by this complex
exponential has the effect of rotating the poles by an amount
proportional to 𝜙. This can be seen below:

Figure 2: Pole-Zero Plot Showing Rotation With 𝜙 = 𝜋/4



By combining two comb filters, one rotated clockwise
and one counterclockwise, we are able to provide gain at
offsets corresponding to the synchrotron/betatron sidebands.
By multiplying eq (3) by a comb filter response with +𝜙
rotation, we get:

𝐻 (𝑧, 𝜙) · 𝐻 (𝑧,−𝜙) = (1 − 𝛼)2

1 − 𝛼 𝑧−𝐷 (𝑒− 𝑗 𝜙 + 𝑒 𝑗 𝜙) + 𝛼2 𝑧−2𝐷

(4)
Which results in:

𝐻 (𝑧) = (1 − 𝛼)2

1 − 2𝛼 𝑐𝑜𝑠(𝜙) 𝑧−𝐷 + 𝛼2 𝑧−2𝐷 (5)

Lastly, when providing gain at the sidebands, one may be
interested in notching out the gain at the rev-lines, because
without doing this, the peaks will be widened. This can be
done by adding zeros at all the revolution lines by modifying
(5). Also, to preserve the normalizing effect of the numerator
coefficient, (1 − 𝛼)2 must be changed to (1 − 𝛼2). The final
transfer function is given by:

𝐻 (𝑧) = 𝐺 · (1 − 𝛼2) (1 − 𝑧−𝐷)
1 − 2𝛼 𝑐𝑜𝑠(𝜙) 𝑧−𝐷 + 𝛼2 𝑧−2𝐷 (6)

Where G is some arbitrary gain. Now, the value of 𝜙 is
determined by:

𝜙 = 2𝜋 ·
𝑓𝑜 𝑓 𝑓 𝑠𝑒𝑡

𝑓𝑟𝑒𝑣

Where 𝑓𝑜 𝑓 𝑓 𝑠𝑒𝑡 is the offset of the sidebands from the rev-
lines in Hz. One may be able to see that the transfer function
given by (6) is similar to the biquad implementation of the
comb filter shown in [2], in fact, (6) is equivalent to a general
biquad implementation and this is how the filter is actually
implemented in VHDL. Some general frequency responses
for such a filter are shown below:

Figure 3: General response of the biquad comb filter. Here,
𝜙 increases from blue to green and the gain at revolution
harmonics is notched out.

A block diagram of the filter is shown below:

Figure 4: Block diagram of the biquad comb filter

For our purposes, the coefficient 𝑏2 is always 0.

Fractional Delay Filter
We see, according to (2), that if we use a sampling rate

of 20 MHz and a delay of 256, we get harmonics with a
fundamental frequency of 78.125 kHz. While this value
is close to the RHIC revolution frequency, often it is not
exact. To account for any discrepancies, we need to be
able to adjust the filter delay by fractional amounts. The
fractional delay filter design used is based largly on the
design described in [4] which provides a comprehensive
overview. A fourth order fractional delay filter is used in
this design and, according to [4], the transfer function for
such a filter is given by:

𝐻 (𝑧) =
4∑︁
𝑖=0

𝐶𝑖 (𝑧)𝐷𝑖 (7)

Where C represents coefficients and D represents the de-
sired delay within the range [-1,1]. As described in [4], such
a filter can be implemented as a Farrow structure. However,
this implementation, even after simplifications, requires 18
multiplications, which is not practical given that 6 fractional
delay filters are required (3 for a single comb filter). Instead,
the like-terms can be combined, resulting in a simple FIR
implementation with only 5 multiplications. While we lose
out on the ability to quickly change the fractional delay value
(now we have to recompute the coefficients), in practice this
is not an issue as the fractional delay will only be used to
provide a one-time correction.

The fractional delay FIR filter is added after each of the
delay blocks seen in figure 4.

Delay Line
The delay line for the OTFB is implemented in BRAM.

The length of the delay line is determined by the revolution
frequency at storage. In RHIC, and EIC, the revolution
frequency is ≈ 78.125 kHz, and if the clock rate is 20 MHz,
a delay line of 256 samples is required. In the current design,
the delay line can be adjusted with a resolution of 50 ns, in
the future, a fractional delay filter can also be utilized to
achieve higher precision.



Phase Equalizer Filter
As is noted in [3], due to the phase response of the closed-

loop system, instabilities can occur when providing gain at
around +/- 6 harmonics from the RF frequency. This is be-
cause a 180 degree phase rollover occurs at those frequencies
and instead of reducing the cavities impedance there, the
comb filter actually increases the impedance. To address this
issue, a so-called phase equalizer filter can be used. Specifi-
cally, a phase equalizer filter is an all-pass filter (unity gain
at all frequencies) with some tunable phase response. Based
on [10], the transfer function and frequency response for
such a filter is shown below:

𝐻 (𝑧) = 𝑎2 + 𝑎1 · 𝑧−𝐷 + 𝑧−2𝐷

1 + 𝑎1 · 𝑧−𝐷 + 𝑎2 · 𝑧−2𝐷 (8)

Figure 5: Response of eq (8) with 𝑎1 = 𝑎2 = 0.5 and D = 1

The delay parameter D is responsible for determining how
many phase rollovers occur within 0 Hz and 𝑓 𝑠

2 Hz. The
parameter 𝑎1 determines the position of the phase rollover
(shifting it left and right) and 𝑎2 determines how quickly the
phase rolls over. By using 𝐷 = 12, 𝑎1 = 0.8, 𝑎2 = 0.3, we
are able to compensate for the phase response of the close
loop system, as will be shown shortly.

SIMULATION TESTING
The VHDL simulations and verification was done using

cocotb [5] and Python. As the VHDL simulator, GHDL [6]
was chosen. The OTFB implementation was validated by
applying a discrete impulse, taking an FFT of the output,
and plotting the result against the ideal frequency response.
This method allows one to quickly check the quantization
noise and numerical errors as a function of data and coeffi-
cient length. Also, taking the impulse response of the filter
quickly reveals any timing errors in the design. In fact, such
a response is what is seen in figure 3.

HARDWARE TESTING
The OTFB was first tested within a lab environment.

There are multiple ways to verify the design is behaving
as expected. For example, one can calculate the impulse
response by applying a discrete pulse to the filter on the
FPGA. One can then view the output of the filter on a scope.

In this case, the preferred testing method is to measure
the closed loop transfer function of a cavity simulator while
the OTFB is enabled. A block diagram of such a setup is
shown below:

Figure 6: System Response Measurement Setup

The result returned by the network analyzer can be thought
of as a measurement of the cavity impedance. An open loop
measurement is shown below:

Figure 7: Open Loop System Response Measurement

As expected, this returns the classic resonator response
of the cavity. If only the direct feedback is enabled, the
measurement returns the following:

Figure 8: Closed Loop System Response Measurement

Again, as expected, the measurement shows the narrow-
band, high gain, reduction of the cavity impedance (by 23
dB) due to the direct loop. Finally, the OTFB is properly
configured and enabled, the measurement is shown below:



Figure 9: Closed Loop + OTFB System Response Measure-
ment

This result clearly shows the OTFB lowering the cavity
impedance at revolution lines around the RF frequency. The
process by which the OTFB can be properly configured is
discussed in the following section. Below, a measurement
of the double-peak comb filter response is shown:

Figure 10: OTFB Double-Comb System Response Measure-
ment

It should be noted, the spurs in the measurement (not
including the one at RF) are due to the response of the crystal
oscillator cavity simulator these tests were preformed on.

In a fully optimized state, we are able to provide close to
30 dB of impedance reduction around the first 3 harmonics,
along with an additional 10 to 20 dB of impedance reduction
up to 8 harmonics. The image below shows a OTFB setup
with proper delay and phase equalizer settings:

Figure 11: Fully optimized OTFB

TUNING THE OTFB

To properly configure the OTFB, a method similar to the
one shown in [8] is used. First a simplistic, linear, model of
the system is defined. An example model is shown below:

Figure 12: Simplistic Linear Model

From here, one can define the transfer function 𝑦

𝑥
= 𝐻 (𝑠)

which will contain terms that describe the loop delay. In the
case of the OTFB, we are interested in defining exactly the
value of the loop delay so we can configure the delay line.
Now, measurements like the ones from the previous section
are plotted against the theoretical response of the model.
Specifically, measurements taken with the digital network
analyzer [7] are used as they account for the response of digi-
tal components. Regardless, chances are that the two will not
agree. In such a case, a least-squares fit is preformed on the
model to better match the real measurement. Specifically:

𝐿 ( ®𝜃) =
∑︁
𝜔

|𝐻𝑚𝑒𝑎𝑠 ( 𝑗𝜔) − 𝐻 𝑓 𝑖𝑡 ( ®𝜃, 𝑗𝜔) |2

must be minimized by altering ®𝜃 which is a vector con-
taining all of the tweakable parameters of the ideal model.
As this process is iterated a few times, the model will more
accurately describe the real system and from there it is easy
to obtain the loop delay based on the model parameters.

CONCLUSION

The OTFB implementation for the EIC has been described
in this paper. Along with the testing methods already men-
tioned, the OTFB will be further validated with beam during
an Accelerator Physics Experiment (APEX) at RHIC. While
most of the desired functionality has been achieved, there
still remain slight fixes that are needed along with some
additional features. Firstly, in certain circumstances, the
fractional delay FIR filter performance is limited by numeri-
cal errors. Specifically the combination of the double-comb
response together with the fractional delay filter causes nu-
merical errors. This can be addressed by increasing the taps
of the FIR filter or by increasing the coefficient bit width.
Secondly, the OTFB needs to be able to deal with a ramping
revolution frequency, potential methods of dealing with this
problem have been proposed by others [9].
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