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Abstract
Digital Network Analyzers (DNA) have been imple-

mented in many Low-Level Radio Frequency (LLRF) sys-
tems, notably NSLS-II and CERN, to help tune feedback
loops. DNA characterizes feedback loops by measuring the
frequency-dependent magnitude and phase transfer func-
tions. It enables the measurement of open loop gains,
gain/phase margins, and loop delays to help fine-tune feed-
back loops. An FPGA-based DNA has been developed and
integrated into the current Relativistic Heavy Ion Collider
(RHIC) LLRF infrastructure. Its performance has been
tested with an implementation of one-turn delay feedback
(OTFB) on the bench to maximize gain and stability. The
DNA has been used to characterize a RHIC 28 MHz cavity
in a RHIC Accelerator Physics Experiment (APEX) to test
transient beam loading compensation strategies.

INTRODUCTION
Vector Network Analyzers (VNAs) are often used in par-

ticle accelerators to measure the resonant frequencies and
quality factors of radiofrequency accelerating cavities. They
can also be used to measure loop gain and phase margins to
ensure loop stability. Other facilities have integrated network
analyzers into their LLRF systems. The team at CERN have
used a complex noise profile as stimulus to tune feedback
loops using models [1]. NSLS-II uses a swept sine-wave net-
work analyzer to see effects of different proportional gain on
beam and cavity [2]. The proposed digital network analyzer
for EIC combines the two methods to use a swept sine-wave
to excite the system and perform regression-based tuning of
feedback loops.

There are a few differences between VNAs and DNAs.
VNAs are large, expensive, and require physical electrical
connectors to interface with RF systems. On the other hand,
the DNA is a LLRF tool that is embedded into the RHIC
cavity controller FPGA. No extra hardware is needed as
RHIC LLRF field controllers already contain DACs and
ADCs. The main cost of the DNA is associated with the
development of the firmware and software.

DNA has been designed on a LLRF chassis containing a
DAC and ADC daughtercard. Post-processing of data is done
in Python to extract system responses. Bench-top testing
compared DNA performance to that of the VNA. The DNA
was used to tune and test the OTFB with a cavity simulator.
We utilize the opportunity to test on RHIC systems while
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RHIC is still running. The long-term goal is to integrate the
network analyzer into the EIC LLRF controllers.

ARCHITECTURE
A network analyzer must have 3 basic functionalities -

to send a stimulus, capture the system output, and perform
post-processing.The DNA uses an FPGA and a DAC to gen-
erate a chirp as the stimulus. An ADC and FPGA are used
to filter and write the data into memory. The data is then
read out to a Linux machine where a Python script calcu-
lates the magnitude and phase response. All FPGA signal
generation and processing is performed in baseband using
IQ modulation and demodulation.

Stimulus
The baseband linear chirp is generated using a simple quar-

ter sine-wave look up table (LuT) with a linearly increasing
frequency tuning word. Both in-phase and quadrature com-
ponents are created using two LuTs, one with a 90° offset.
The chirp sweeps through the whole bandwidth of negative
and positive frequencies. The chirp is flexible with pro-
grammable start/end frequency, duration, and attenuation.

Fig. 1 shows 3 different points of chirp injection into the
control loop. The 3 DNA operating modes control a mux
such that only one point of injection is used at any given
time. The different operating modes, when used by itself
or in conjunction with one another, are able to extract the
controller, plant, or sensitivity transfer functions.

ADC Capture
On the ADC side, the ADC signal gets IQ demodulated

to baseband, low-pass filtered, and decimated. The FPGA
uses a Xilinx Multi-Port Memory Controller (MPMC) IP
core to write data to DDR2 memory. The DDR2 clock
runs at 200 MHz, but the write FIFO buffer is filled at a
rate of 10 MHz or less. Both the in-phase and quadrature
components of the chirp and ADC data gets recorded in
memory to be later recovered for post-processing. An event
sent through the Update Link is used to trigger the capture
of input and output data [3].

Post-processing
Python scripts are used to bring all the DNA firmware

and software components together. The script is able to
control DAC chirp parameters, ADC decimation rates and
post-processing. Once the data is pulled from DDR2, the
Python script performs a complex FFT on the input and
output IQ data.

Eq. (1) and Eq. (2) shows the calculations used to deter-
mine the magnitude and phase response. X(s) represents



Figure 1: Diagram shows a negative feedback control loop with a controller and plant. In each operating mode, a chirp
injection (shown in red) is summed into a different point in the LLRF control loop.

the FFT of the complex chirp signal injected into the DAC
while Y(s) represents the FFT of the complex system out-
put. The magnitude response is estimated to be the cross
spectral density divided by the power spectral density. The
noise present at the output will be uncorrelated to the input.
When averaging multiple measurements, the cross spectrum
estimation will average out the uncorrelated output noise [4].
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Different Operating Modes
As shown in Fig. 1, K(s) represents the PID and OTFB

response. G(s) represents the cavity response.

Reference Injection at the reference is used to measure
the complementary sensitivity function:

𝐾 (𝑠) ∗ 𝐺 (𝑠)
1 + 𝐾 (𝑠) ∗ 𝐺 (𝑠) (3)

After PID Injection after the PID is used to measure
the input disturbance sensitivity function:

𝐺 (𝑠)
1 + 𝐾 (𝑠) ∗ 𝐺 (𝑠) (4)

Negative Feedback Path When injecting in the nega-
tive feedback path, the feedback loop is opened to get the
open loop gain K(s)*G(s). When the feedback controller is
turned off, we are able to extract the cavity response G(s).
With these two terms, we are able to extract the controller
response to calculate any other transfer function.

PERFORMANCE
To test the DNA, a cavity impedance measurement was

taken of a cavity simulator. First, the DNA is calibrated
by adjusting the ADC scaling and phase offset. Next, the
PID and OTFB are turned on and a sweep is triggered to
calculate the system response of the cavity simulator. A
Copper Mountain TR1300/1 VNA is used to get a compa-
rable measurement of the cavity simulator under the same
settings. The center frequency is 29.2 MHz with a span of

2.5 MHz. Both analyzers use 16,000 points to perform 10
averages of the measurement. This gives a frequency reso-
lution of 156.25 Hz. A smaller frequency resolution can be
achieved on the DNA by increasing the number of points up
to 100,000 and increasing the ADC decimation rate.

Figure 2: Plot shows the magnitude response of the DNA
(blue) and VNA (orange).

Figure 3: Plot shows phase the response of the DNA (blue)
and VNA (orange).

Fig. 2 and 3 shows the comparison between the DNA and
VNA measurement. In the tests, the OTFB and PID were
turned on with the same loop settings. The DNA magni-
tude response is almost identical to the VNA’s. The DNA



measurement can be improved with more averaging. The
difference in phase response can be attributed to differences
in loop delay.

APPLICATIONS
The transfer function measurement is used to tune the

OTFB loop using regression optimization. Python is used
to compare a model of the system response to the network
analyzer measurement. The script runs regression functions
to fit the model to the measurement. From the fitted model,
we can derive the loop delay to setup the feedback loop [5].

The Digital Network Analyzer has been verified on a
RHIC 28 MHz cavity. During a RHIC APEX, the DNA was
used to take a measurement of a cavity with the analog direct
RF feedback loop closed. We expect a peak at the center
frequency from the reference, and a lower impedance with
the direct RF feedback loop on. We noticed an asymmetrical
peak 200 kHz from the carrier frequency as shown in Fig. 4.
A VNA was used to cross-check the results of the DNA.
Upon further analysis on the open loop gain, we found that
the fast feedback phase margins were off by 40°. Cable delay
of 2.5 ns was added to the amplifier chain to bring the system
back closer to optimal phase margins.

Figure 4: Magnitude response before (blue) and after (or-
ange) tuning the fast feedback loop.

Figure 5: Phase response before (blue) and after (orange)
tuning the fast feedback loop.

CONCLUSION
The Digital Network Analyzer has been tested on a RHIC

operational cavity. It is flexible and cheaper compared to
a physical off-the-shelf Vector Network Analyzer. Perfor-
mance have been proven both in lab tests with a cavity sim-
ulator and operational tests with a RHIC 28 MHz cavity.
Future work includes adding Nyquist plots for stability, im-
provement of scripts for better UI, and integration into the
EIC Common Hardware Platform.
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